Hamiltonians of e(3)

The ansatz:


Structure constants:
 STRUC_CONS:={{U1,U2, U3}, {U2,U3, U1}, {U3,U1, U2},
              {U1,V2, V3}, {U2,V3, V1}, {U3,V1, V2},
              {U1,V3,-V2}, {U2,V1,-V3}, {U3,V2,-V1} }$
The Hamiltonian:
 HAM := n1*U1 + n2*U2 + n3*U3 + 
	m1*V1 + m2*V2 + m3*V3 + 
	  a11*U1**2 +   a22*U2**2 +   a33*U3**2 + 
	2*a12*U1*U2 + 2*a23*U2*U3 + 2*a13*U1*U3 +
	  b11*U1*V1 +   b12*U1*V2 +   b13*U1*V3 + 
	  b21*U2*V1 +   b22*U2*V2 +   b23*U2*V3 + 
	  b31*U3*V1 +   b32*U3*V2 +   b33*U3*V3 + 
	  c11*V1**2 +   c22*V2**2 +   c33*V3**2 +
	2*c12*V1*V2 + 2*c23*V2*V3 + 2*c13*V1*V3 $
Casimirs:
 J1 = V1**2 + V2**2 + V3**2
 J2 = U1*V1 + U2*V2 + U3*V3
We consider all possible cases. In the description of each case we use the following notation. NVT is a list of 3 expressions: the first is replaced by the Hamiltonian, the second by the first Casimir, and the third by the second Casimir. INEQU is a list of inequalities, e.g. {a11} would mean that a11 is non-zero and {a11,a22} would mean that either a11 or a22 is non-zero. We compute the general inhomogeneous solution.

For identifying solutions we use the following Hamiltonians:

 C111!_D2!_S1!_={2*m3*a33*(a11-a22) - n3*b11*(a11+a22),
                 2*m2*a33*(a11-a22) - n2*b11*(a11+a33),
                 2*m1*a33*(a11-a22) - n1*b11*(a22+a33),
                 4*c33*a33**2*(a11-a22)**2 
                 - b11**2*(a11**2*a33-a11*a22**2-a11*a33**2+a22**2*a33),
                 a33**2*c22*(a11-a22)*4- b11**2*(a11*a22-a33**2),
                 a33*b33*(a11-a22)+a11*b11*(a22-a33),
                 c23,c13,c12,c11,b32,b31,b23,b22,b21,b13,b12,a23,a13,a12},

 WOLF!_EFIMOVSKAYA!_S4!_={a11-a22, a33-2*a11, 4*a11*c33+b31**2+b32**2, 
                           a12, a23, a13, b11, b12, b13, b21, b22, b23, b33,  
                           c11, c22, c12, c23, c13, 
                           b31*(a33*m1-n3*b31)+b32*(a33*m2-n3*b32),     
                           n1, n2, m3},

 CHAPLYGIN!_WOLF!_EFIMOVSKAJA!_D4!_={a11-a22, a33-2*a11, c11+c22,  
                     a12, a23, a13, b11, b12, b13, b21, b22, b23, b31, b32, b33,
                     c33, c23, c13, n1, n2, m3},

 CHAPLYGIN!_WOLF!_EFIMOVSKAJA!_D3!_={ 
                       a11-a22, a33-4*a11, a11*c33+(b31/4)**2+(b32/4)**2, 
                       a12, a23, a13, b11, b12, b13, b21, b22, b23, b33,  
                       c11, c22, c12, c23, c13, n1, n2, m3},

 CLEBSCH!_={b11-b22, b11-b33, 
              a11*a22*(c11-c22)+a33*a11*(c33-c11)+a22*a33*(c22-c33), 
              a12, a23, a13, b12, b13, b21, b23, b31, b32, c12, c23, c13, 
              n1, n2, n3, m1, m2, m3},

 STEKLOV!_LYAPUNOV!_={a11*a22*(b11-b22)+a33*a11*(b33-b11)+a22*a33*(b22-b33), 
                      a11*a22*c11-a22*(b22-b33)**2-a11*a22*c22+a11*(b33-b11)**2,
                      a22*a33*c22-a33*(b33-b11)**2-a22*a33*c33+a22*(b11-b22)**2,
                      a12,a23,a13,b12,b13,b21,b23,b31,b32,c12,c23,c13,
                      n1, n2, n3, m1, m2, m3}
The following are special cases of the more general solutions above.
 ORIGINAL!_LAGRANGE!_={a11-a22,a12,a23,a13,b11,b12,b13,b21,b22,b23, 
                       b31,b32,b33,c11,c22,c33,c12,c23,c13,n1,n2,n3,m1,m2},

 NEW!_LAGRANGE!_={a11-a22,a12,a23,a13,b11,b12,b13,b21,b22,b23, 
                  b31,b32,    c11,c22,    c12,c23,c13,n1,n2,   m1,m2},

 EULER!_={a12, a23, a13, b11, b12, b13, b21, b22, b23, b31, b32, b33, 
            c11, c22, c33, c12, c23, c13, n1, n2, n3, m1, m2, m3},

 KIRCHHOFF!_={a11-a22, b11-b22, c11-c22, a33, b33, c33, 
                a12, a23, a13, b12, b13, b21, b23, b31, b32,            
                c12, c23, c13, n1, n2, n3, m1, m2, m3},

 KOWALEWSKI!_={a11-a22, a33-2*a11, a12, a23, a13, 
               b11, b12, b13, b21, b22, b23, b31, b32, b33,  
               c11, c22, c33, c12, c23, c13, 
               n1, n2, n3, m3},

 SOKOLOV!_={a11-a22, a33-2*a11, 4*a11*c33+b31**2+b32**2, 
            a12, a23, a13, b11, b12, b13, b21, b22, b23, b33,  
            c11, c22, c12, c23, c13, 
            n1, n2, n3, m1, m2, m3},

 WOLF!_EFIMOVSKAYA!_S1!_={a11-a22, a12, a23, a13, b11, b12, b13, b21, b22, b23, 
                          b31, b32, c11, c22, c33, c12, c23, c13, 
                          n1, n2, m1, m2},

 WOLF!_EFIMOVSKAYA!_S2!_={a11-a22, a12, a23, a13, b11, b12, b13,  
                          b21, b22, b23, b31, b32, c11, c22, c12, c23, c13, 
                          a22*c33*4+b33**2, a22*(a22-a33)*m1*2+(a22+a33)*b33*n1,
                          a22*(a22-a33)*m2*2+(a22+a33)*b33*n2, 
                          m3*(a22-a33)+b33*n3},

 WOLF!_EFIMOVSKAYA!_S3!_={a11-a22, a33-2*a11, a12, a23, a13, b31**2+b32**2,  
                           n1*b31+n2*b32, m1*b31+m2*b32, a33*m3+2*b32*n2, 
                           b11, b12, b13, b21, b22, b23, b33,  
                           c11, c22, c33, c12, c23, c13, n1, n2, m3},

 C111!_D2!_s2!_={c33*a33*(a11-a22) - c22*a22*(a11-a33),
                 c23,c13,c12,c11,b33,b32,b31,b23,b22,b21,b13,b12,b11,
                 a23,a13,a12,m3,m2,m1,n3,n2,n1}
Apart from the above solutions also their versions under permutations of indices are used. Any extra index 1 at the end, like in EULER_1 stands for a cyclic permuted version 1 --> 2 --> 3 --> 1 and any extra index 2 stands for a flip 1 <--> 2.

Not in use yet are the Hamiltonians from the skew symmetric computation of VS and TW which first have to be transformed into the classification below.

 SKEW1={c11,c22,c33,c12,c23,c13,             % vanishing c-matrix
        b11,b22,b33,b21+b12,b31+b13,b32+b23, % skew symmetric b-matrix
        a12,b13,b23,                         % normalizations for real Hamiltonians
        a11-a22,a13,a23,
        n1,n2,m1,m2
       },

 SKEW3={c11,c22,c33,c12,c23,c13,               
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11**2+a13**2+a23**2+b12**2*kap,a11-a22,a11+a33,
        m1,m2
       },

 SKEW4!.2={c11,c22,c33,c12,c23,c13,            
           b11,b22,b33,b21+b12,b31+b13,b32+b23,
        a12,b13,b23,                           
        a11**2+4*a13**2+4*a23**2+b12**2*kap,a11-a22,a33,
        m1,m2,a11*(a13*n1+a23*n2)+2*n3*(a13**2+a23**2)
       },

 SKEW4!.4={c11,c22,c33,c12,c23,c13,            
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a22-2*a33,2*a11*a22-a22**2+b12**2*kap,a13,a23,
        m1,m2,n1,n3
       },

 SKEW4!.6={c11,c22,c33,c12,c23,c13,            
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11-2*a33,2*a11*a22-a11**2+b12**2*kap,a13,a23,
        m1,m2,n2,n3
       },

 SKEW4!.5={c11,c22,c33,c12,c23,c13,            
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11*a22+b12**2*kap,a13,a23,a33,
        m1,m2
       },

 SKEW6!.1={c11,c22,c33,c12,c23,c13,               
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11**2+16*a13**2+16*a23**2+b12**2*kap,a11-a22,a11-2*a33,
        m1,m2,m3,n3,n1*a13+n2*a23            % general inhom extension
       },

 SKEW6!.2={c11,c22,c33,c12,c23,c13,               
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11**2+16*a13**2+16*a23**2+b12**2*kap,a11-a22,a11-2*a33,
        m1,m2,n3,a13*n2-a23*n1,a23**2+a13**2 % special inhom extension
       },

 SKEW6!.3={c11,c22,c33,c12,c23,c13,               
        b11,b22,b33,b21+b12,b31+b13,b32+b23,   
        a12,b13,b23,                           
        a11**2+16*a13**2+16*a23**2+b12**2*kap,a11-a22,a11-2*a33,
        m1,m2,n3,a13,a23                     % even more special inhom extension
       }

We use the following notation:

Comments

Sometimes equialent Hamiltonians are not automatically recognised as equivalent because the used procedure preduce does not know about inequalities. --> Check by hand necessary.

Partial Summary
Cases 111,112,121,122,123 for degree 1-4:
Distinguished Hamiltonians:
c111_d2_s1 (inhomogeneous generalization of the Steklov-Lyapunov case),
c111_d2_s2 (Clebsch solution which interestingly does not have an inhomogeneous generalization)
c111_d4_j2_s1,
c121_d4_s1,
c121_d4_s3,
c121_d3_j2_s1,
c121_d4_j2_s4,
c123_d1_s2,


Case 1.1.1.

 NVT  :={U1**2,V1**2,U2*V2}$
 INEQU:={{a11},{a22},{a33},{a11-a22},{a22-a33},{a33-a11}}$
 a12:=a13:=a23:=0$      % orthogonal rotation
 b12:=b13:=b23:=0$      % U --> U + g*V
 b22:=c11:=0$           % adding Casimirs to HAM 
J1 <> 0 <> J2
Degree 1: -
Degree 2: - 1(1) Could this be an inhomogeneous generalization of the Steklov-Lyapunov case?   2(1) This seems to be the Clebsch solution which interestingly does not have an inhomogeneous generalization.
Degree 3: -
Degree 4: - 1(5) 2(4) 3(?) 4(5) 5(5) 6(5) 7(5) 8(5) 9(5) 10(5) 11(5) 12(5) 13(5) (no extra Hamiltonians other than above)(?)

J1 <> 0 = J2
Degree 1: -
Degree 2: 1(1) [= (J2<>0)],   2(1) [= (J2<>0)]
Degree 3: -
Degree 4: 1(1+)
Degree 5:


Case 1.1.2.

 NVT  :={U1**2,V1**2,U2*V2}$
 INEQU:={{a11},{a22},{a11-a22}}$
 a12:=a13:=a23:=a33:=0$ 
 b12:=b13:=b23:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: -
Degree 2: 1(1) [special limit of case 1.1.1., degree 2, sol. 1]
Degree 3: -
Degree 4: 1(5) [= degree 2],   2(5) [?],   3(4) [?],   4(4) [?]
Degree 5: -

J1 <> 0 = J2
Degree 1: -
Degree 2: 1(1) [= degree 2, J2<>0]
Degree 3: -
Degree 4: 1(4+) [= degree 2, J2<>0],   2(4+) [< c111_d2_j2_s2_, c111_d2_s2_, c111_d2_s1_],   3(1+) [< c111_d4_j2_s1_],   4(3+) [< c112_d2_s1_, c111_d2_s1_]
Degree 5:


Case 1.2.1.

 NVT  :={U1**2,V2**2,U2*V2}$
 INEQU:={{a11},{a33},{a33-a11}}$
 a12:=a13:=a23:=0$   a22:=a11$
 b12:=b13:=b23:=0$   b21:=0$
 b11:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: 1(1) [< c111_d2_s1_ but different FI]
Degree 2: 1(1) [< c111_d2_s1_],   2(2) [= c121_d1_s1_]
Degree 3: 1(6) [= c121_d1_s1_]
Degree 4: 1(1),   2(1) [ CC of c121_d4_s1_],   3(1),   4(5) [= c121_d2_s1_],   5(4) [< c121_d4_s4(=c121_d2_s1_), < c111_d2_s1_, strange that c121_d4_s5 < c121_d4_s4 but c121_d4_s5 has fewer solutions than c121_d4_s4. The reason is that some first integrals become functionally dependent on each other and the Casimirs under the specialization.],   6(1) [< c121_d4_s3_, i.e. special limiting case of c121_d4_s3 for which the FI would vanish., < c111_d2_s1_],   7(10) [= c121_d1_s1]
Degree 5: 1(20)

J1 <> 0 = J2
Degree 1: 1(1) [= c121_d1_s1]
Degree 2: 1(1) [= c121_d2_s1],   2(2) [= c121_d1_s1]
Degree 3: 1(1+),   2(5) [= c121_d1_s1]
Degree 4: 1(1+) [= c121_d4_s1, first integrals differ only by multiple of J2],   2(1+) [CC of c121_d4_s1, first integrals differ only by multiple of J2],   3(1+) [= c121_d4_s3_, > c121_d4_s6_],   4(1+) [> c121_d4_s6],   5(4+) [= c121_d2_s1, >c121_d4_s5_],   6(4+) [> c121_d4_s5, < c121_d2_s1, < c111_d2_s1],   7(8) [= c121_d1_s1],   8(3+) [< c121_d2_s1, < c111_d2_s1],   9(3+) [> c121_d4_s5, < c121_d2_s1, < c111_d2_s1]
Degree 5:


Case 1.2.2.

 NVT  :={U1**2,V2**2,U2*V2}$
 INEQU:={{a11}}$
 a12:=a13:=a23:=0$      a33:=0$ a22:=a11$ 
 b12:=b13:=b23:=0$      b21:=0$
 b22:=c11:=0$
J1 <> 0 <> J2
Degree 1: 1(1) [< c121_d1_s1, < c111_d2_s1]
Degree 2: 1(1) [< c121_d2_s1, < c112_d2_s1, < c111_d2_s1],   2(2) [= c122_d1_s1]
Degree 3: 1(6) [= c122_d1_s1]
Degree 4: 1(5) [= c122_d2_s1],   2(10) [= c122_d1_s1],   3(4) [< c122_d2_s1, < c121_d2_s1, < c112_d2_s1, < c111_d2_s1]
Degree 5: 1

J1 <> 0 = J2
Degree 1: 1(1) [= c122_d1_s1]
Degree 2: 1(1) [= c122_d2_s1, > c122_d4_s3],   2(2) [= c122_d1_s1]
Degree 3: 1(5) [= c122_d1_s1]
Degree 4: 1(4+) [= c122_d2_s1, > c122_d4_s3],   2(8) [= c122_d1_s1],   3(3) [= c122_d4_s3]
Degree 5:


Case 1.2.3.

 NVT  :={U3**2,V1**2,U2*V2}$
 INEQU:={{a33}}$
 a12:=a13:=a23:=0$   a11:=a22:=0$
 b31:=b32:=0$   b21:=-b12$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: 1(1) [< c111_d4_j2_s1],   2(1) ,   3(2) [< c123_d1_s2, < c123_d1_s1, < c121_d1_s1, < c111_d4_j2_s1, < c111_d4_s1, < c111_d2_s1]
Degree 2: 1(2) [= c123_d1_s1, > c123_d1_s3],   2(1),   3(1),   4(1),   5(3),   6(1),   7(1),   8(3),   9(2),   10(1),   11(2),   12(2),   13(6),   14(4)
Degree 3: 1(6),   2(1),   3(1),   4(1),   5(1),   6(6),   7(1),   8(1),   9(7),   10(7),   11(8),   12(8),   13(12),   14(18),   15(3),   16(3),  
Degree 4: 1(6),   2(5),   3(5),   4(5),   5(5),   6(5),   7(12),   8(12),   9(5),   10(5),   11(38),   12(1),   13(2),   14(2),   15(10),   16(1),   17(12),   18(12),   19(1),   20(5),   21(5),   22(18),   23(18),   24(5),   25(5),   26(5),   27(4),   28(10),   29(20),  

J1 <> 0 = J2
Degree 1: 1(1),   2(1),   3(2)
Degree 2: 1(2),   2(1),   3(1),   4(1),   5(3),   6(1),   7(1),   8(3),   9(2),   10(1),   11(2),   12(2),   13(6),   14(4)
Degree 3: 1(1+),   2(1+),   3(5),   4(1+),   5(1+),   6(1),   7(1),   8(6),   9(6),   10(7),   11(7),   12(5),   13(10,   14(16),   15(3+),   16(3+)
Degree 4: 1(4+),   2(4+),   3(4+),   4(4+),   5(4+),   6(4+),   7(10+),   8(10+),   9(4+),   10(4+),   11(32+),   12(1+),   13(2+),   14(2+),   15(1+),   16(2+),   17(2+),   18(8),   19(10),   20(10),   21(1),   22(4+),   23(4+),   24(15+),   25(15+),   26(4+),   27(4+),   28(4+),   29(8+),   30(3+),   31(16),   32(?)
Degree 5:


Case 1.3.1.1.

 NVT  :={V3**2,V1**2,U2*V2}$  
 INEQU:={{c11},{c22},{c11-c22}}$
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c12:=c13:=c23:=c33:=0$
 b22:=0$ 

Case 1.3.1.2.

  NVT  :={V3**2,V1**2,U2*V2}$  
 INEQU:={{c11}}$
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c12:=c13:=c23:=c22:=c33:=0$
 b22:=0$ 

Case 1.3.1.3.

 NVT  :={V1**2,U2*V2}$  
 INEQU:={}$
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c12:=c13:=c23:=c11:=c22:=c33:=0$
 b22:=0$ 

Case 1.3.2.1.

 NVT  :={V2**2,V1**2,U2*V2}$  
 INEQU:={{c22},{c23}}$
 EQNS:={(c33-c22)**2+4*c23**2}$               
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c12:=c13:=c11:=0$
 b22:=0$ 

Case 1.3.2.2.

 NVT  :={V3**2,V1**2,U2*V2}$  
 INEQU:={{c23}}$
 EQNS:={c33**2+4*c23**2}$               
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c12:=c13:=c11:=c22:=0$
 b22:=0$ 

Case 1.3.3.

 NVT  :={V1*V3,V1**2,U2*V2}$  
 INEQU:={{c13}}$
 % c12:=i*c13$
 EQNS:={c12**2+c13**2}$
 a22:=a33:=a11$
 a12:=a23:=a13:=0$
 c23:=c11:=c22:=c33:=0$
 b22:=0$ 

Case 2.1.

 NVT  :={U1**2,V2**2,U2*V2}$
 INEQU:={{a11},{a22},{a23}}$  
 EQNS:={(a33-a22)**2+4*a23**2}$     % a33:=a22-2*i*a23$           
 a12:=a13:=0$     
 b12:=b13:=b23:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: 1
Degree 2: 1, 2, 3, 4, 5, 6, 7
Degree 3: came till 1.1.1.1.2.1.1.1.1.2.2.2.1.2.2.1.2.1. then memory low, try 65 and/or 59
Degree 4:
Degree 5:

J1 <> 0 = J2
Degree 1: 1
Degree 2: 1, 2, 3, 4, 5, 6, 7
Degree 3:
Degree 4:
Degree 5:


Case 2.2.

 NVT  :={U2**2,V3**2,U2*V2}$
 INEQU:={{a22},{a23}}$
 % a33:=a22-2*i*a23$
 EQNS:={(a33-a22)**2+4*a23**2}$             % a33:=a22-2*i*a23$        
 a11:=a12:=a13:=0$ 
 b23:=b21:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: 1, 2, 3
Degree 2: 1, 2, 3, 4, 5, 6, 7, 8, 9
Degree 3:
Degree 4:
Degree 5:

J1 <> 0 = J2
Degree 1: 1, 2, 3
Degree 2: 1, 2, 3, 4, 5, 6, 7, 8, 9
Degree 3:
Degree 4:
Degree 5:


Case 2.3.

 NVT  :={U1**2,V2**2,U2*V2}$
 INEQU:={{a11},{a23}}$
 EQNS:={a33**2+4*a23**2}$                % a33:=-2*i*a23$
 a12:=a13:=a22:=0$ 
 b12:=b32:=b13:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: 1
Degree 2: 1, 2, 3
Degree 3:
Degree 4:
Degree 5:

J1 <> 0 = J2
Degree 1: 1
Degree 2: 1, 2, 3, 4
Degree 3:
Degree 4:
Degree 5:


Case 2.4.

 NVT  :={U3**2,V2**2,U2*V2}$
 INEQU:={{a23}}$
 % a33:=-2*i*a23$
 EQNS:={a33**2+4*a23**2}$               
 a11:=a12:=a13:=a22:=0$ 
 b21:=b31:=b32:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: -
Degree 2: 1
Degree 3: -
Degree 4: 1, 2
Degree 5: -

J1 <> 0 = J2
Degree 1: -
Degree 2: 1
Degree 3: 1, 2
Degree 4: 1, 2, 3
Degree 5:


Case 3.1.

 NVT  :={U3**2,V2**2,U2*V2}$
 INEQU:={{a11},{a13}}$
 % a13:=i*a12$
 EQNS:={a12**2+a13**2}$               
 a11:=a22:=a33$ a23:=0$ 
 b21:=b31:=b32:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: -
Degree 2: 1
Degree 3: -
Degree 4: ,
Degree 5: ,

J1 <> 0 = J2
Degree 1: -
Degree 2: 1
Degree 3: 1, 2
Degree 4: 1, 2
Degree 5:


Case 3.2.

 NVT  :={U1*U3,V2**2,U2*V2}$
 INEQU:={{a13}}$
 % a13:=i*a12$
 EQNS:={a12**2+a13**2}$               
 a11:=a22:=a33:=a23:=0$ 
 b32:=b23:=b12:=0$
 b22:=c11:=0$ 
J1 <> 0 <> J2
Degree 1: -
Degree 2: 1, 2
Degree 3: 1, 2, 3
Degree 4: 1, 2, 3, 4, 5
Degree 5:

J1 <> 0 = J2
Degree 1: -
Degree 2: 1, 2, 3
Degree 3: 1, 2, 3, 4, 5
Degree 4: 1, 2, 3, 4, 5
Degree 5: