Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
       2      2
0=9*a23  + a33


Expressions

The solution is given through the following expressions:

         9      2            3      2
      - ----*a23 *b32*r26 + ----*a33 *b32*r26
         64                  64
r20=------------------------------------------
                            2
                     a23*a33


      3
     ----*b32*r26
      16
r21=--------------
         a33


r23=0


r24=0


      9     11            9      10    2        37     9    2
r25=(---*a23  *c23*r26 - ----*a23  *b32 *r26 + ----*a23 *a33 *c23*r26
      8                   32                    8

         63     8    2    2        29     7    4
      - ----*a23 *a33 *b32 *r26 + ----*a23 *a33 *c23*r26
         64                        4

         61     6    4    2        21     5    6
      - ----*a23 *a33 *b32 *r26 + ----*a23 *a33 *c23*r26
         48                        4

         23     4    6    2        13     3    8
      - ----*a23 *a33 *b32 *r26 + ----*a23 *a33 *c23*r26
         32                        8

         5      2    8    2        1         10             1      10    2
      - ----*a23 *a33 *b32 *r26 + ---*a23*a33  *c23*r26 - -----*a33  *b32 *r26)/
         32                        8                       192

    9    2        10     7    4            5    6            3    8
(a23 *a33 *b32 + ----*a23 *a33 *b32 + 4*a23 *a33 *b32 + 2*a23 *a33 *b32
                  3

     1         10
  + ---*a23*a33  *b32)
     3


      3
     ---*a23*r26
      2
r27=-------------
         a33


r28=0


      9     3        9         2
     ---*a23 *r26 + ---*a23*a33 *r26
      4              4
r29=---------------------------------
                   2
                a33 *b32


          3     2        1     2
       - ---*a23 *r26 - ---*a33 *r26
          4              4
r210=--------------------------------
                 a23*a33


r212=0


          3     2        3     2
       - ---*a23 *r26 - ---*a33 *r26
          2              2
r213=--------------------------------
                 a33*b32


       9     4        3     2    2        3     4
      ---*a23 *r26 + ---*a23 *a33 *r26 + ---*a33 *r26
       8              2                   8
r214=-------------------------------------------------
                              2
                       a23*a33 *b32


r215=0


r216=0


       9     2        5     2
      ---*a23 *r26 + ---*a33 *r26
       8              8
r217=-----------------------------
                    2
                 a33


r218=0


r219=0


             11        3      10    2    21     9    2        29     8    2    2
c33=( - 3*a23  *c23 + ----*a23  *b32  - ----*a23 *a33 *c23 + ----*a23 *a33 *b32
                       16                2                    48

         122     7    4        35     6    4    2    23     5    6
      - -----*a23 *a33 *c23 + ----*a23 *a33 *b32  - ----*a23 *a33 *c23
          9                    48                    3

         173     4    6    2    5     3    8        5      2    8    2
      + -----*a23 *a33 *b32  - ---*a23 *a33 *c23 + ----*a23 *a33 *b32
         432                    3                   54

         1          10         1      10    2      10        10     8    3
      - ----*a23*a33  *c23 + -----*a33  *b32 )/(a23  *a33 + ----*a23 *a33
         18                   216                            3

           6    5        4    7    1     2    9
    + 4*a23 *a33  + 2*a23 *a33  + ---*a23 *a33 )
                                   3


      3      8    2    5     7    2        5      6    2    2
c22=(----*a23 *b32  - ---*a23 *a33 *c23 + ----*a23 *a33 *b32
      16               6                   12

         11     5    4        5      4    4    2    7     3    6
      - ----*a23 *a33 *c23 + ----*a23 *a33 *b32  - ---*a23 *a33 *c23
         6                    16                    6

         19      2    6    2    1         8         1      8    2      8
      + -----*a23 *a33 *b32  - ---*a23*a33 *c23 + -----*a33 *b32 )/(a23 *a33
         216                    6                  216

       7     6    3    5     4    5    1     2    7
    + ---*a23 *a33  + ---*a23 *a33  + ---*a23 *a33 )
       3               3               3


c13=0


c12=0


         3     2        1     2
      - ---*a23 *b32 + ---*a33 *b32
         2              6
b33=--------------------------------
                a23*a33


b31=0


b21=0


      1
     ---*a33*b32
      6
b11=-------------
         a23


      3     2    1     2
     ---*a23  + ---*a33
      2          2
a22=---------------------
             a33


          2      2
     3*a23  + a33
a11=---------------
          a33


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r26, c23, a33, b32, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
                           2
{a22,a11,64*a23*c23 - 3*b32 ,a33,r26,a23,b32}


Relevance for the application:

Modulo the following equation:

       2      2
0=9*a23  + a33


the system of equations related to the Hamiltonian HAM:

       2       12         10    2    46     8    4         6    6        4    8
HAM=(u1 *(3*a23   + 11*a23  *a33  + ----*a23 *a33  + 10*a23 *a33  + 3*a23 *a33
                                     3

              1     2    10            1     9    2        5     7    4
           + ---*a23 *a33  ) + u1*v1*(---*a23 *a33 *b32 + ---*a23 *a33 *b32
              3                        6                   9

            2     5    6        1     3    8        1          10          2
         + ---*a23 *a33 *b32 + ---*a23 *a33 *b32 + ----*a23*a33  *b32) + u2 *(
            3                   3                   18

         3     12    11     10    2    23     8    4        6    6
        ---*a23   + ----*a23  *a33  + ----*a23 *a33  + 5*a23 *a33
         2           2                 3

            3     4    8    1     2    10
         + ---*a23 *a33  + ---*a23 *a33  ) + u2*u3
            2               6

            11        20     9    3        7    5        5    7    2     3    9
     *(2*a23  *a33 + ----*a23 *a33  + 8*a23 *a33  + 4*a23 *a33  + ---*a23 *a33 )
                      3                                            3

          2
      + u3

          10    2    10     8    4        6    6        4    8    1     2    10
     *(a23  *a33  + ----*a23 *a33  + 4*a23 *a33  + 2*a23 *a33  + ---*a23 *a33  )
                     3                                            3

                  10            10     8    3            6    5
      + u3*v2*(a23  *a33*b32 + ----*a23 *a33 *b32 + 4*a23 *a33 *b32
                                3

                       4    7        1     2    9                   3     11
                + 2*a23 *a33 *b32 + ---*a23 *a33 *b32) + u3*v3*( - ---*a23  *b32
                                     3                              2

            29     9    2        49     7    4        7     5    6
         - ----*a23 *a33 *b32 - ----*a23 *a33 *b32 - ---*a23 *a33 *b32
            6                    9                    3

            1     3    8        1          10          2   3      10    2
         - ---*a23 *a33 *b32 + ----*a23*a33  *b32) + v2 *(----*a23  *b32
            6                   18                         16

            5     9    2        29     8    2    2    8     7    4
         - ---*a23 *a33 *c23 + ----*a23 *a33 *b32  - ---*a23 *a33 *c23
            6                   48                    3

            35     6    4    2        5    6        173     4    6    2
         + ----*a23 *a33 *b32  - 3*a23 *a33 *c23 + -----*a23 *a33 *b32
            48                                      432

            4     3    8        5      2    8    2    1         10
         - ---*a23 *a33 *c23 + ----*a23 *a33 *b32  - ---*a23*a33  *c23
            3                   54                    6

             1      10    2                10            20     8    3
         + -----*a33  *b32 ) + v2*v3*(2*a23  *a33*c23 + ----*a23 *a33 *c23
            216                                          3

                6    5            4    7        2     2    9          2
         + 8*a23 *a33 *c23 + 4*a23 *a33 *c23 + ---*a23 *a33 *c23) + v3 *(
                                                3

                11        3      10    2    21     9    2
         - 3*a23  *c23 + ----*a23  *b32  - ----*a23 *a33 *c23
                          16                2

            29     8    2    2    122     7    4        35     6    4    2
         + ----*a23 *a33 *b32  - -----*a23 *a33 *c23 + ----*a23 *a33 *b32
            48                     9                    48

            23     5    6        173     4    6    2    5     3    8
         - ----*a23 *a33 *c23 + -----*a23 *a33 *b32  - ---*a23 *a33 *c23
            3                    432                    3

            5      2    8    2    1          10         1      10    2
         + ----*a23 *a33 *b32  - ----*a23*a33  *c23 + -----*a33  *b32 ))/(
            54                    18                   216

          10        10     8    3        6    5        4    7    1     2    9
       a23  *a33 + ----*a23 *a33  + 4*a23 *a33  + 2*a23 *a33  + ---*a23 *a33 )
                    3                                            3

has apart from the Hamiltonian and Casimirs only the following first integral: 

           9     11        35     9    2        79     7    4
FI=u1*v1*(---*a23  *b32 + ----*a23 *a33 *b32 + ----*a23 *a33 *b32
           8               8                    12

              19     5    6        13     3    8        5          10          2
           + ----*a23 *a33 *b32 + ----*a23 *a33 *b32 + ----*a23*a33  *b32) + u2
              4                    8                    24

      9     12    21     10    2    79     8    4    19     6    6
   *(---*a23   + ----*a23  *a33  + ----*a23 *a33  + ----*a23 *a33
      8           4                 8                2

         39     4    8    5     2    10    1     12               3     11
      + ----*a23 *a33  + ---*a23 *a33   + ---*a33  ) + u2*u3*( - ---*a23  *a33
         8                4                8                      2

          13     9    3         7    5        5    7    7     3    9
       - ----*a23 *a33  - 11*a23 *a33  - 9*a23 *a33  - ---*a23 *a33
          2                                             2

          1         11               3     10            11     8    3
       - ---*a23*a33  ) + u2*v3*( - ---*a23  *a33*b32 - ----*a23 *a33 *b32
          2                          4                   4

          23     6    5        5     4    7        3     2    9
       - ----*a23 *a33 *b32 - ---*a23 *a33 *b32 - ---*a23 *a33 *b32
          6                    2                   4

          1      11          2   9     12    39     10    2    33     8    4
       - ----*a33  *b32) + u3 *(---*a23   + ----*a23  *a33  + ----*a23 *a33
          12                     4           4                 2

          27     6    6    21     4    8    3     2    10
       + ----*a23 *a33  + ----*a23 *a33  + ---*a23 *a33  ) + u3*v2*(
          2                4                4

       3     10                8    3            6    5            4    7
      ---*a23  *a33*b32 + 5*a23 *a33 *b32 + 6*a23 *a33 *b32 + 3*a23 *a33 *b32
       2

          1     2    9                  9    2        10     7    4
       + ---*a23 *a33 *b32) + u3*v3*(a23 *a33 *b32 + ----*a23 *a33 *b32
          2                                           3

              5    6            3    8        1         10          2
       + 4*a23 *a33 *b32 + 2*a23 *a33 *b32 + ---*a23*a33  *b32) + v1 *(
                                              3

       9     11        9      10    2    37     9    2        63     8    2    2
      ---*a23  *c23 - ----*a23  *b32  + ----*a23 *a33 *c23 - ----*a23 *a33 *b32
       8               32                8                    64

          29     7    4        61     6    4    2    21     5    6
       + ----*a23 *a33 *c23 - ----*a23 *a33 *b32  + ----*a23 *a33 *c23
          4                    48                    4

          23     4    6    2    13     3    8        5      2    8    2
       - ----*a23 *a33 *b32  + ----*a23 *a33 *c23 - ----*a23 *a33 *b32
          32                    8                    32

          1         10         1      10    2            3      9        2
       + ---*a23*a33  *c23 - -----*a33  *b32 ) + v2*v3*(----*a23 *a33*b32
          8                   192                        16

          5     7    3    2    3     5    5    2    3     3    7    2
       + ---*a23 *a33 *b32  + ---*a23 *a33 *b32  + ---*a23 *a33 *b32
          8                    4                    8

          1          9    2      2      9      10    2    27     8    2    2
       + ----*a23*a33 *b32 ) + v3 *( - ----*a23  *b32  - ----*a23 *a33 *b32
          16                            64                64

          13     6    4    2    3      4    6    2    3      2    8    2
       - ----*a23 *a33 *b32  - ----*a23 *a33 *b32  + ----*a23 *a33 *b32
          32                    32                    64

          1      10    2
       + ----*a33  *b32 )
          64

{HAM,FI} = 0





And again in machine readable form:



HAM=(u1**2*(3*a23**12 + 11*a23**10*a33**2 + 46/3*a23**8*a33**4 + 10*a23**6*a33**
6 + 3*a23**4*a33**8 + 1/3*a23**2*a33**10) + u1*v1*(1/6*a23**9*a33**2*b32 + 5/9*
a23**7*a33**4*b32 + 2/3*a23**5*a33**6*b32 + 1/3*a23**3*a33**8*b32 + 1/18*a23*a33
**10*b32) + u2**2*(3/2*a23**12 + 11/2*a23**10*a33**2 + 23/3*a23**8*a33**4 + 5*
a23**6*a33**6 + 3/2*a23**4*a33**8 + 1/6*a23**2*a33**10) + u2*u3*(2*a23**11*a33 +
 20/3*a23**9*a33**3 + 8*a23**7*a33**5 + 4*a23**5*a33**7 + 2/3*a23**3*a33**9) + 
u3**2*(a23**10*a33**2 + 10/3*a23**8*a33**4 + 4*a23**6*a33**6 + 2*a23**4*a33**8 +
 1/3*a23**2*a33**10) + u3*v2*(a23**10*a33*b32 + 10/3*a23**8*a33**3*b32 + 4*a23**
6*a33**5*b32 + 2*a23**4*a33**7*b32 + 1/3*a23**2*a33**9*b32) + u3*v3*( - 3/2*a23
**11*b32 - 29/6*a23**9*a33**2*b32 - 49/9*a23**7*a33**4*b32 - 7/3*a23**5*a33**6*
b32 - 1/6*a23**3*a33**8*b32 + 1/18*a23*a33**10*b32) + v2**2*(3/16*a23**10*b32**2
 - 5/6*a23**9*a33**2*c23 + 29/48*a23**8*a33**2*b32**2 - 8/3*a23**7*a33**4*c23 + 
35/48*a23**6*a33**4*b32**2 - 3*a23**5*a33**6*c23 + 173/432*a23**4*a33**6*b32**2 
- 4/3*a23**3*a33**8*c23 + 5/54*a23**2*a33**8*b32**2 - 1/6*a23*a33**10*c23 + 1/
216*a33**10*b32**2) + v2*v3*(2*a23**10*a33*c23 + 20/3*a23**8*a33**3*c23 + 8*a23
**6*a33**5*c23 + 4*a23**4*a33**7*c23 + 2/3*a23**2*a33**9*c23) + v3**2*( - 3*a23
**11*c23 + 3/16*a23**10*b32**2 - 21/2*a23**9*a33**2*c23 + 29/48*a23**8*a33**2*
b32**2 - 122/9*a23**7*a33**4*c23 + 35/48*a23**6*a33**4*b32**2 - 23/3*a23**5*a33
**6*c23 + 173/432*a23**4*a33**6*b32**2 - 5/3*a23**3*a33**8*c23 + 5/54*a23**2*a33
**8*b32**2 - 1/18*a23*a33**10*c23 + 1/216*a33**10*b32**2))/(a23**10*a33 + 10/3*
a23**8*a33**3 + 4*a23**6*a33**5 + 2*a23**4*a33**7 + 1/3*a23**2*a33**9)$

FI=u1*v1*(9/8*a23**11*b32 + 35/8*a23**9*a33**2*b32 + 79/12*a23**7*a33**4*b32 + 
19/4*a23**5*a33**6*b32 + 13/8*a23**3*a33**8*b32 + 5/24*a23*a33**10*b32) + u2**2*
(9/8*a23**12 + 21/4*a23**10*a33**2 + 79/8*a23**8*a33**4 + 19/2*a23**6*a33**6 + 
39/8*a23**4*a33**8 + 5/4*a23**2*a33**10 + 1/8*a33**12) + u2*u3*( - 3/2*a23**11*
a33 - 13/2*a23**9*a33**3 - 11*a23**7*a33**5 - 9*a23**5*a33**7 - 7/2*a23**3*a33**
9 - 1/2*a23*a33**11) + u2*v3*( - 3/4*a23**10*a33*b32 - 11/4*a23**8*a33**3*b32 - 
23/6*a23**6*a33**5*b32 - 5/2*a23**4*a33**7*b32 - 3/4*a23**2*a33**9*b32 - 1/12*
a33**11*b32) + u3**2*(9/4*a23**12 + 39/4*a23**10*a33**2 + 33/2*a23**8*a33**4 + 
27/2*a23**6*a33**6 + 21/4*a23**4*a33**8 + 3/4*a23**2*a33**10) + u3*v2*(3/2*a23**
10*a33*b32 + 5*a23**8*a33**3*b32 + 6*a23**6*a33**5*b32 + 3*a23**4*a33**7*b32 + 1
/2*a23**2*a33**9*b32) + u3*v3*(a23**9*a33**2*b32 + 10/3*a23**7*a33**4*b32 + 4*
a23**5*a33**6*b32 + 2*a23**3*a33**8*b32 + 1/3*a23*a33**10*b32) + v1**2*(9/8*a23
**11*c23 - 9/32*a23**10*b32**2 + 37/8*a23**9*a33**2*c23 - 63/64*a23**8*a33**2*
b32**2 + 29/4*a23**7*a33**4*c23 - 61/48*a23**6*a33**4*b32**2 + 21/4*a23**5*a33**
6*c23 - 23/32*a23**4*a33**6*b32**2 + 13/8*a23**3*a33**8*c23 - 5/32*a23**2*a33**8
*b32**2 + 1/8*a23*a33**10*c23 - 1/192*a33**10*b32**2) + v2*v3*(3/16*a23**9*a33*
b32**2 + 5/8*a23**7*a33**3*b32**2 + 3/4*a23**5*a33**5*b32**2 + 3/8*a23**3*a33**7
*b32**2 + 1/16*a23*a33**9*b32**2) + v3**2*( - 9/64*a23**10*b32**2 - 27/64*a23**8
*a33**2*b32**2 - 13/32*a23**6*a33**4*b32**2 - 3/32*a23**4*a33**6*b32**2 + 3/64*
a23**2*a33**8*b32**2 + 1/64*a33**10*b32**2)$