Solution 2 to problem over
Remaining equations |
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Equations
The following unsolved equations remain:
2 2
0=a23 + a33
Expressions
The solution is given through the following expressions:
2 1 2
a23 *a33*r11 + ---*a33 *b33*r14
2
r10=---------------------------------
3
a23
r12=0
a33*r14
r13=---------
a23
r15=0
2 1
a23 *m3 - ---*a33*b33*n3
2
m2=--------------------------
a23*a33
m1=0
a23*n3
n2=--------
a33
n1=0
a33*c23
c33=---------
a23
3 1 2 2
a23 *c23 + ---*a33 *b33
4
c22=--------------------------
2
a23 *a33
c13=0
c12=0
- a33*b33
b32=------------
a23
b31=0
b13=0
b12=0
b11=b33
2
a23
a22=------
a33
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r11, r14, m3, c23, n3, b33, a33, a23
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
2 1
{r14,a23,a33,{a23 *m3 - ---*a33*b33*n3,m3,n3}}
2
Relevance for the application:
Modulo the following equation:
2 2
0=a23 + a33
the system of equations related to the Hamiltonian HAM:
2 2 4 3 3
HAM=(u1*v1*a23 *a33*b33 + u2 *a23 + 2*u2*u3*a23 *a33 + u2*a23 *n3
2 2 2 2 2 2
+ u3 *a23 *a33 - u3*v2*a23*a33 *b33 + u3*v3*a23 *a33*b33 + u3*a23 *a33*n3
2 3 1 2 2 2
+ v2 *(a23 *c23 + ---*a33 *b33 ) + 2*v2*v3*a23 *a33*c23
4
3 1 2 2 2
+ v2*(a23 *m3 - ---*a23*a33*b33*n3) + v3 *a23*a33 *c23 + v3*a23 *a33*m3)/(
2
2
a23 *a33)
has apart from the Hamiltonian and Casimirs the following 2 first integrals:
3 2 1 2
FI=u2*a23 + u3*a23 *a33 + ---*v3*a33 *b33
2
{HAM,FI} = 0
FI=v2*a23 + v3*a33
{HAM,FI} = 0
And again in machine readable form:
HAM=(u1*v1*a23**2*a33*b33 + u2**2*a23**4 + 2*u2*u3*a23**3*a33 + u2*a23**3*n3 +
u3**2*a23**2*a33**2 - u3*v2*a23*a33**2*b33 + u3*v3*a23**2*a33*b33 + u3*a23**2*
a33*n3 + v2**2*(a23**3*c23 + 1/4*a33**2*b33**2) + 2*v2*v3*a23**2*a33*c23 + v2*(
a23**3*m3 - 1/2*a23*a33*b33*n3) + v3**2*a23*a33**2*c23 + v3*a23**2*a33*m3)/(a23
**2*a33)$
FI=u2*a23**3 + u3*a23**2*a33 + 1/2*v3*a33**2*b33$
FI=v2*a23 + v3*a33$