Solution 17 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

        2              2               3
     a33 *n3*r26 + i*n2 *n3*r453 - i*n3 *r453
r10=------------------------------------------
                          3
                       a33


        2              3               2
     a33 *n2*r26 + i*n2 *r453 - i*n2*n3 *r453
r11=------------------------------------------
                          3
                       a33


          2            3             2
     i*a33 *n2*r26 - n2 *r453 + n2*n3 *r453
r12=----------------------------------------
                         3
                      a33


r13=0


r14=0


r15=0


          3             3               2                       2
r20=(i*a33 *m1*r26 - a33 *m2*r26 + 2*a33 *b33*n2*r26 + a33*m1*n2 *r453

                 2                   2                   2              3
      + a33*m1*n3 *r453 - i*a33*m2*n2 *r453 + i*a33*m2*n3 *r453 + a33*n2 *r494

                 2                     2             3
      + a33*n2*n3 *r494 - 2*i*b33*n2*n3 *r453)/(2*a33 *n2)


     i*a33*m2*n3*r453 + a33*n2*n3*r494 - i*b33*n2*n3*r453
r21=------------------------------------------------------
                                3
                             a33


                                               2                  2
     a33*m1*n2*r453 + i*a33*m2*n2*r453 + a33*n2 *r494 - 2*i*b33*n2 *r453
r22=---------------------------------------------------------------------
                                       3
                                    a33


     i*a33*m1*n3*r453 + i*a33*n2*n3*r494 + b33*n2*n3*r453
r23=------------------------------------------------------
                                3
                             a33


                                                 2                2
     i*a33*m1*n2*r453 - a33*m2*n2*r453 + i*a33*n2 *r494 + 2*b33*n2 *r453
r24=---------------------------------------------------------------------
                                       3
                                    a33


     i*n2*n3*r453
r27=--------------
            2
         a33


      - n2*n3*r453
r28=---------------
            2
         a33


      i*n2*n3*r453
r210=--------------
             2
          a33


              2         2
       - i*a33 *r26 - n3 *r453
r212=--------------------------
                   2
                a33


r213=0


r214=0


       - n2*n3*r453
r215=---------------
             2
          a33


           2           2          2
      i*a33 *r26 - 2*n2 *r453 + n3 *r453
r216=------------------------------------
                        2
                     a33


               2
       - 2*i*n2 *r453
r217=-----------------
              2
           a33


r218=0


r219=0


r220=0


r30=(i*a33*m1*n3*r494 - a33*m2*n3*r494 + 2*a33*n2*n3*r422 + 2*b33*n2*n3*r494

                                2
      + 2*c12*n2*n3*r453)/(2*a33 *n2)


           2                   2                   2   2           2
r31=( - a33 *m1*m2*r453 + i*a33 *m1*n2*r494 - i*a33 *m2 *r453 - a33 *m2*n2*r494

             2   2
      + 2*a33 *n2 *r422 + a33*b33*m1*n2*r453 + 3*i*a33*b33*m2*n2*r453

                    2                    2               2   2             3
      + 2*a33*b33*n2 *r494 + 2*a33*c12*n2 *r453 - 2*i*b33 *n2 *r453)/(2*a33 *n2)


     n3*r422
r32=---------
       a33


     n2*r422
r33=---------
       a33


           2   2             2                 2                   2
r34=( - a33 *m1 *r453 - i*a33 *m1*m2*r453 - a33 *m1*n2*r494 - i*a33 *m2*n2*r494

               2   2
      + 2*i*a33 *n2 *r422 + 3*i*a33*b33*m1*n2*r453 - a33*b33*m2*n2*r453

                      2                      2             2   2             3
      + 2*i*a33*b33*n2 *r494 + 2*i*a33*c12*n2 *r453 + 2*b33 *n2 *r453)/(2*a33

   *n2)


     2*i*c12*n3*r453
r35=-----------------
             2
          a33


     i*a33*n2*r422 + 2*i*c12*n2*r453
r36=---------------------------------
                     2
                  a33


     a33*n3*r422 + 2*c12*n3*r453
r37=-----------------------------
                   2
                a33


     n2*r422
r38=---------
       a33


     i*a33*n2*r422 + 2*i*c12*n2*r453
r39=---------------------------------
                     2
                  a33


r310=( - a33*m1*n3*r453 - i*a33*m2*n3*r453 + 2*a33*n2*n3*r446 + 2*a33*n2*n3*r494

                                   2
       + 2*i*b33*n2*n3*r453)/(2*a33 *n2)


      i*a33*m2*r453 + a33*n2*r446 + a33*n2*r494 - i*b33*n2*r453
r311=-----------------------------------------------------------
                                   2
                                a33


r312=0


      i*a33*m1*r453 + i*a33*n2*r446 + i*a33*n2*r494 + b33*n2*r453
r313=-------------------------------------------------------------
                                    2
                                 a33


r314=0


r315=0


      2*i*n3*r453
r316=-------------
          a33


      i*n2*r453
r317=-----------
         a33


       - n2*r453
r318=------------
         a33


r319=0


       - a33*m1*r453 - i*a33*m2*r453 + 2*i*b33*n2*r453
r320=--------------------------------------------------
                                2
                           2*a33


      n3*r446
r321=---------
        a33


      n2*r446
r322=---------
        a33


       - i*n3*r494
r323=--------------
          a33


      a33*m2*r453 + i*a33*n2*r446 - i*a33*n2*r494 - b33*n2*r453
r324=-----------------------------------------------------------
                                   2
                                a33


      a33*m1*r453 + a33*n2*r494 - i*b33*n2*r453
r325=-------------------------------------------
                           2
                        a33


      i*n2*r453
r326=-----------
         a33


r327=0


      n3*r453
r328=---------
        a33


r329=0


r330=0


r331=0


      n2*r453
r332=---------
        a33


r333=0


r334=0


       - i*a33*m1*r453 + a33*m2*r453 - 2*b33*n2*r453
r335=------------------------------------------------
                               2
                          2*a33


      i*n3*r494
r336=-----------
         a33


       - a33*m2*r453 + i*a33*n2*r494 + b33*n2*r453
r337=----------------------------------------------
                             2
                          a33


      n3*r446
r338=---------
        a33


       - a33*m1*r453 + a33*n2*r446 - a33*n2*r494 + i*b33*n2*r453
r339=------------------------------------------------------------
                                    2
                                 a33


      i*n2*r446
r340=-----------
         a33


       - n2*r453
r341=------------
         a33


       - n3*r453
r342=------------
         a33


r343=0


r344=0


r345=0


       - n2*r453
r346=------------
         a33


      i*n2*r453
r347=-----------
         a33


r348=0


r349=0


r350=0


       - i*n2*r453
r351=--------------
          a33


r352=0


r353=0


r354=0


r355=0


           2   2               2                     2
r40=( - a33 *m1 *r494 - 2*i*a33 *m1*m2*r494 + 4*i*a33 *m1*n2*r422

           2   2             2
      + a33 *m2 *r494 - 4*a33 *m2*n2*r422 + 4*i*a33*b33*m1*n2*r494

                                           2
      - 4*a33*b33*m2*n2*r494 + 8*a33*b33*n2 *r422 + 4*i*a33*c12*m1*n2*r453

                                    2   2                    2             2   2
      - 4*a33*c12*m2*n2*r453 + 4*b33 *n2 *r494 + 8*b33*c12*n2 *r453)/(8*a33 *n2

   )


r41=0


     i*a33*m1*r422 - a33*m2*r422 + 2*b33*n2*r422
r42=---------------------------------------------
                      2*a33*n2


r43=0


r44=0


r45=0


      - a33*c12*m1*r453 - i*a33*c12*m2*r453 + 2*i*b33*c12*n2*r453
r46=--------------------------------------------------------------
                                  2
                               a33 *n2


r47=0


r48=0


          2              2
r49=(i*a33 *m1*r422 - a33 *m2*r422 + 2*a33*b33*n2*r422 + 2*i*a33*c12*m1*r453

                                                     2
      - 2*a33*c12*m2*r453 + 4*b33*c12*n2*r453)/(2*a33 *n2)


r410=0


r411=0


r412=0


r413=0


r415=(i*a33*m1*r446 + i*a33*m1*r494 - a33*m2*r446 - a33*m2*r494 + 2*a33*n2*r422

       + 2*b33*n2*r446 + 2*b33*n2*r494 - 2*c12*n2*r453)/(2*a33*n2)


r416=0


      a33*r422 - 2*c12*r453
r417=-----------------------
               a33


r418=0


r419=0


      2*i*c12*r453
r420=--------------
          a33


r421=0


r423=0


r424=0


r425=

  - a33*m1*r453 - i*a33*m2*r453 + 2*a33*n2*r446 + a33*n2*r494 + 2*i*b33*n2*r453
--------------------------------------------------------------------------------
                                    2*a33*n2


r426=0


r427=0


r428=0


r429=0


r432=0


r433=0


r435=0


      i*a33*m1*r446 - a33*m2*r446 + 2*b33*n2*r446 - 4*c12*n2*r453
r436=-------------------------------------------------------------
                               2*a33*n2


r437=0


       - 2*c12*r453
r438=---------------
           a33


r439=(a33*m1*r494 + i*a33*m2*r494 - 2*i*a33*n2*r422 - 2*i*b33*n2*r494

       - 2*i*c12*n2*r453)/(2*a33*n2)


r440=0


r442=0


       - i*a33*r422 - 2*i*c12*r453
r444=------------------------------
                  a33


r445=0


r447=0


r448= - i*r446 - i*r494


r449=0


r450=0


r451=0


r454=0


r455=0


r456=0


r458=0


r459= - i*r446


       - r494
r460=---------
         2


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


r470=0


r471=( - a33*m1*r494 - i*a33*m2*r494 + 2*i*a33*n2*r422 + 2*i*b33*n2*r494

       + 2*i*c12*n2*r453)/(2*a33*n2)


r472=0


r473=i*r422


      i*a33*m1*r446 - a33*m2*r446 + 2*b33*n2*r446 - 4*c12*n2*r453
r474=-------------------------------------------------------------
                               2*a33*n2


r475=0


       - 4*c12*r453
r476=---------------
           a33


r477=0


      i*a33*r422 + 2*i*c12*r453
r478=---------------------------
                 a33


       - 2*c12*r453
r479=---------------
           a33


r480=0


r481=i*r446 + i*r494


r482=0


r483=r446


r484=0


r485=0


r486=0


r487= - r453


r488=0


r489=0


r490=0


r491=0


r492=i*r446


r493=0


r495= - i*r446


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


        - r494
r4107=---------
          2


r4108=0


r4109=i*r446


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4116=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


    b33*n3
m3=--------
     a33


n1=i*n2


c23=0


c22=2*i*c12


c13=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21= - i*b33


b13=0


b12=i*b33


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


                                                       2
     i*a33*b33*m1 - a33*b33*m2 + 2*i*a33*c12*n2 + 2*b33 *n2
c33=--------------------------------------------------------
                            2*a33*n2


r441= - i*r422


r431=i*r453


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r453, r422, m1, r26, r494, r446, m2, n3, b33, n2, c12, 
a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{n2,a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{ - i*a33*b33*m1 + a33*b33*m2 - 2*i*a33*c12*n2 + 2*a33*c33*n2 - 2*b33**2*n2,
a11,
a12,
a13,
a22,
a23,
b11,
b12 - i*b33,
b13,
b21 + i*b33,
b22,
b23,
b31,
b32,
c11,
c13,
 - 2*i*c12 + c22,
c23,
n1 - i*n2,
a33*m3 - b33*n3}$

The system of equations related to the Hamiltonian HAM:

                                                    2
HAM=i*u1*v2*b33 + i*u1*n2 - i*u2*v1*b33 + u2*n2 + u3 *a33 + u3*v3*b33 + u3*n3

                                   2
     + 2*v1*v2*c12 + v1*m1 + 2*i*v2 *c12 + v2*m2

                                                              2
         2  i*a33*b33*m1 - a33*b33*m2 + 2*i*a33*c12*n2 + 2*b33 *n2
     + v3 *--------------------------------------------------------
                                   2*a33*n2

        v3*b33*n3
     + -----------
           a33

has apart from the Hamiltonian and Casimirs the following 5 first integrals: 

         2                            2                      2
FI=2*i*u1 *v1*v2*a33*n2 - 2*i*u1*u2*v1 *a33*n2 + 2*i*u1*u2*v2 *a33*n2

                                                               2   2
    + 2*u1*u3*v1*v3*a33*n2 + 2*i*u1*u3*v2*v3*a33*n2 + 2*i*u1*v1 *n2

                   2           2
    + 2*u1*v1*v2*n2  + u1*v1*v3 *(i*a33*m1 - a33*m2 + 2*b33*n2)

                               2
    + 2*u1*v1*v3*n2*n3 - 2*i*u2 *v1*v2*a33*n2 - 2*i*u2*u3*v1*v3*a33*n2

                                            2          2   2
    + 2*u2*u3*v2*v3*a33*n2 + 2*i*u2*v1*v2*n2  + 2*u2*v2 *n2

              2
    + u2*v2*v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*u2*v2*v3*n2*n3

          2   2                         2                2
    + 2*u3 *v3 *a33*n2 + 2*i*u3*v1*v3*n2  + 2*u3*v2*v3*n2

           3                                         2
    + u3*v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*u3*v3 *n2*n3

  = a product of the elements of: {i,

   u1*v1 + u2*v2 + u3*v3,

                                                               2            2
   2*u1*v2*a33*n2 - 2*u2*v1*a33*n2 - 2*i*u3*v3*a33*n2 + 2*v1*n2  - 2*i*v2*n2

        2
    + v3 *(a33*m1 + i*a33*m2 - 2*i*b33*n2) - 2*i*v3*n2*n3}

{HAM,FI} = 0



          2   2    2   2                    2   2                      2   2
FI= - 4*u1 *v2 *a33 *n2  + 8*u1*u2*v1*v2*a33 *n2  + 8*i*u1*u3*v2*v3*a33 *n2

                       3            2       3
    - 8*u1*v1*v2*a33*n2  + 8*i*u1*v2 *a33*n2

              2          2                2                       2
    + u1*v2*v3 *( - 4*a33 *m1*n2 - 4*i*a33 *m2*n2 + 8*i*a33*b33*n2 )

                         2          2   2    2   2                      2   2
    + 8*i*u1*v2*v3*a33*n2 *n3 - 4*u2 *v1 *a33 *n2  - 8*i*u2*u3*v1*v3*a33 *n2

             2       3                      3
    + 8*u2*v1 *a33*n2  - 8*i*u2*v1*v2*a33*n2

              2       2                2                       2
    + u2*v1*v3 *(4*a33 *m1*n2 + 4*i*a33 *m2*n2 - 8*i*a33*b33*n2 )

                         2          2   2    2   2                      3
    - 8*i*u2*v1*v3*a33*n2 *n3 + 4*u3 *v3 *a33 *n2  + 8*i*u3*v1*v3*a33*n2

                       3
    + 8*u3*v2*v3*a33*n2

           3         2              2                     2
    + u3*v3 *(4*i*a33 *m1*n2 - 4*a33 *m2*n2 + 8*a33*b33*n2 )

             2       2                  4
    + 8*u3*v3 *a33*n2 *n3 + 8*i*v1*v2*n2

           2                2                2             3                3
    + v1*v3 *( - 4*a33*m1*n2  - 4*i*a33*m2*n2  + 8*i*b33*n2 ) + 8*i*v1*v3*n2 *n3

          2   4        2               2              2           3
    + 8*v2 *n2  + v2*v3 *(4*i*a33*m1*n2  - 4*a33*m2*n2  + 8*b33*n2 )

                3        4        2   2          2            2   2
    + 8*v2*v3*n2 *n3 + v3 *( - a33 *m1  - 2*i*a33 *m1*m2 + a33 *m2

                                                    2   2
       + 4*i*a33*b33*m1*n2 - 4*a33*b33*m2*n2 + 4*b33 *n2 )

        3                                              2
    + v3 *(4*i*a33*m1*n2*n3 - 4*a33*m2*n2*n3 + 8*b33*n2 *n3)

        2      4       2   2
    + v3 *(4*n2  + 4*n2 *n3 )

which the program can not factorize further.

{HAM,FI} = 0



                                                                   2          2
FI=2*i*u1*v2*a33*n2 - 2*i*u2*v1*a33*n2 + 2*u3*v3*a33*n2 + 2*i*v1*n2  + 2*v2*n2

        2
    + v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v3*n2*n3

  = a product of the elements of: {i,

                                                               2            2
   2*u1*v2*a33*n2 - 2*u2*v1*a33*n2 - 2*i*u3*v3*a33*n2 + 2*v1*n2  - 2*i*v2*n2

        2
    + v3 *(a33*m1 + i*a33*m2 - 2*i*b33*n2) - 2*i*v3*n2*n3}

{HAM,FI} = 0



            2                      3                      2
FI=2*i*u1*v1 *v2*a33*n2 + 2*i*u1*v2 *a33*n2 + 2*i*u1*v2*v3 *a33*n2

               3                      2                      2
    - 2*i*u2*v1 *a33*n2 - 2*i*u2*v1*v2 *a33*n2 - 2*i*u2*v1*v3 *a33*n2

             2                    2                    3                3   2
    + 2*u3*v1 *v3*a33*n2 + 2*u3*v2 *v3*a33*n2 + 2*u3*v3 *a33*n2 + 2*i*v1 *n2

          2      2     2   2                                      2
    + 2*v1 *v2*n2  + v1 *v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v1 *v3*n2*n3

               2   2            2   2       3   2
    + 2*i*v1*v2 *n2  + 2*i*v1*v3 *n2  + 2*v2 *n2

        2   2                                      2                   2   2
    + v2 *v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v2 *v3*n2*n3 + 2*v2*v3 *n2

        4                                      3
    + v3 *(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v3 *n2*n3

  = a product of the elements of: {i,

     2     2     2
   v1  + v2  + v3 ,

                                                               2            2
   2*u1*v2*a33*n2 - 2*u2*v1*a33*n2 - 2*i*u3*v3*a33*n2 + 2*v1*n2  - 2*i*v2*n2

        2
    + v3 *(a33*m1 + i*a33*m2 - 2*i*b33*n2) - 2*i*v3*n2*n3}

{HAM,FI} = 0



            2       2   2                   2   2                 2   2
FI= - 2*i*u1 *v2*a33 *n2  + 2*i*u1*u2*v1*a33 *n2  - 2*u1*u2*v2*a33 *n2

             2       3                    2                       2   2
    - 2*u1*u3 *v2*a33 *n2 - 2*u1*u3*v2*a33 *n2*n3 - 2*u1*u3*v3*a33 *n2

             3    2                   2       2                    2    2
    - 4*u1*v1 *a33 *c12*n2 + 4*i*u1*v1 *v2*a33 *c12*n2 - 8*u1*v1*v2 *a33 *c12*n2

                        2                       2              2    2
    + u1*v1*v2*( - 2*a33 *m1*n2 + 2*i*a33*b33*n2 ) - 4*u1*v1*v3 *a33 *c12*n2

                      3        2          2                     2
    - 4*i*u1*v1*a33*n2  + u1*v2 *( - 2*a33 *m2*n2 + 2*a33*b33*n2 )

                  2    2                            3              2
    + 2*i*u1*v2*v3 *a33 *c12*n2 + u1*v2*( - 4*a33*n2  + 2*a33*n2*n3 )

           2          2            2                     2                  2
    + u1*v3 *( - i*a33 *m1*n2 + a33 *m2*n2 - 2*a33*b33*n2 ) - 2*u1*v3*a33*n2 *n3

          2       2   2          2       3                    2
    + 2*u2 *v1*a33 *n2  + 2*u2*u3 *v1*a33 *n2 + 2*u2*u3*v1*a33 *n2*n3

                      2   2            3    2
    + 2*i*u2*u3*v3*a33 *n2  - 4*i*u2*v1 *a33 *c12*n2

           2       2                       2
    + u2*v1 *(2*a33 *m1*n2 - 2*i*a33*b33*n2 )

                     2                     2                2    2
    + u2*v1*v2*(2*a33 *m2*n2 - 2*a33*b33*n2 ) - 2*i*u2*v1*v3 *a33 *c12*n2

                       2          3    2                    2    2
    - 2*u2*v1*a33*n2*n3  - 4*u2*v2 *a33 *c12*n2 - 4*u2*v2*v3 *a33 *c12*n2

           2        2              2                       2
    + u2*v3 *( - a33 *m1*n2 - i*a33 *m2*n2 + 2*i*a33*b33*n2 )

                      2            3       3          2       2   2
    + 2*i*u2*v3*a33*n2 *n3 + 2*i*u3 *v3*a33 *n2 - 2*u3 *v1*a33 *n2

            2       2   2     2   2        3           3             2
    + 2*i*u3 *v2*a33 *n2  + u3 *v3 *( - a33 *m1 - i*a33 *m2 + 2*i*a33 *b33*n2)

            2       2                            2
    + 4*i*u3 *v3*a33 *n2*n3 + 4*i*u3*v1*v2*v3*a33 *c12*n2

                       2                     2                  2
    + u3*v1*v3*(2*i*a33 *m1*n2 + 2*a33*b33*n2 ) - 2*u3*v1*a33*n2 *n3

             2       2                           2                       2
    - 4*u3*v2 *v3*a33 *c12*n2 + u3*v2*v3*(2*i*a33 *m2*n2 - 2*i*a33*b33*n2 )

                      2             3    2
    + 2*i*u3*v2*a33*n2 *n3 - 2*u3*v3 *a33 *c12*n2

           2        2              2
    + u3*v3 *( - a33 *m1*n3 - i*a33 *m2*n3 + 2*i*a33*b33*n2*n3)

            3           2
    + 4*i*v1 *a33*c12*n2

        2   2         2               2
    + v1 *v3 *(2*i*a33 *c12*m1 - 2*a33 *c12*m2 + 4*a33*b33*c12*n2)

          2                             2           2
    + 4*v1 *v3*a33*c12*n2*n3 + 4*i*v1*v2 *a33*c12*n2

              2          2                 2
    + v1*v2*v3 *( - 2*a33 *c12*m1 - 2*i*a33 *c12*m2 + 4*i*a33*b33*c12*n2)

    + 4*i*v1*v2*v3*a33*c12*n2*n3

                          2              2           3         2        2   2
    + v1*v2*(2*i*a33*m1*n2  - 2*a33*m2*n2  + 4*b33*n2 ) + v1*v3 *( - a33 *m1

              2                                                           2
       - i*a33 *m1*m2 + 3*i*a33*b33*m1*n2 - a33*b33*m2*n2 + 2*i*a33*c12*n2

              2   2                                      2
       + 2*b33 *n2 ) + v1*v3*(2*i*a33*m1*n2*n3 + 2*b33*n2 *n3)

                 4       2   2
    + v1*( - 2*n2  + 2*n2 *n3 )

        2             2                2             3         2        2
    + v2 *(2*a33*m1*n2  + 2*i*a33*m2*n2  - 4*i*b33*n2 ) + v2*v3 *( - a33 *m1*m2

              2   2                                                   2
       - i*a33 *m2  + a33*b33*m1*n2 + 3*i*a33*b33*m2*n2 + 2*a33*c12*n2

                2   2                                        2
       - 2*i*b33 *n2 ) + v2*v3*(2*i*a33*m2*n2*n3 - 2*i*b33*n2 *n3)

                4         2   2
    + v2*(2*i*n2  - 2*i*n2 *n3 )

        4       2             2                                  3
    + v3 *(i*a33 *c12*m1 - a33 *c12*m2 + 2*a33*b33*c12*n2) + 2*v3 *a33*c12*n2*n3

        2
    + v3

              2            2              2              2                2
   *(a33*m1*n2  + a33*m1*n3  - i*a33*m2*n2  + i*a33*m2*n3  - 2*i*b33*n2*n3 )

                3               3
    + v3*(2*i*n2 *n3 - 2*i*n2*n3 )
Stop of a subroutine.
Number of garbage collections exceeds max_gc_fac.
The factorization crashed!

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=i*u1*v2*b33 + i*u1*n2 - i*u2*v1*b33 + u2*n2 + u3**2*a33 + u3*v3*b33 + u3*n3 
+ 2*v1*v2*c12 + v1*m1 + 2*i*v2**2*c12 + v2*m2 + v3**2*(i*a33*b33*m1 - a33*b33*m2
 + 2*i*a33*c12*n2 + 2*b33**2*n2)/(2*a33*n2) + (v3*b33*n3)/a33$

FI=2*i*u1**2*v1*v2*a33*n2 - 2*i*u1*u2*v1**2*a33*n2 + 2*i*u1*u2*v2**2*a33*n2 + 2*
u1*u3*v1*v3*a33*n2 + 2*i*u1*u3*v2*v3*a33*n2 + 2*i*u1*v1**2*n2**2 + 2*u1*v1*v2*n2
**2 + u1*v1*v3**2*(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*u1*v1*v3*n2*n3 - 2*i*u2**2*
v1*v2*a33*n2 - 2*i*u2*u3*v1*v3*a33*n2 + 2*u2*u3*v2*v3*a33*n2 + 2*i*u2*v1*v2*n2**
2 + 2*u2*v2**2*n2**2 + u2*v2*v3**2*(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*u2*v2*v3*
n2*n3 + 2*u3**2*v3**2*a33*n2 + 2*i*u3*v1*v3*n2**2 + 2*u3*v2*v3*n2**2 + u3*v3**3*
(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*u3*v3**2*n2*n3$

FI= - 4*u1**2*v2**2*a33**2*n2**2 + 8*u1*u2*v1*v2*a33**2*n2**2 + 8*i*u1*u3*v2*v3*
a33**2*n2**2 - 8*u1*v1*v2*a33*n2**3 + 8*i*u1*v2**2*a33*n2**3 + u1*v2*v3**2*( - 4
*a33**2*m1*n2 - 4*i*a33**2*m2*n2 + 8*i*a33*b33*n2**2) + 8*i*u1*v2*v3*a33*n2**2*
n3 - 4*u2**2*v1**2*a33**2*n2**2 - 8*i*u2*u3*v1*v3*a33**2*n2**2 + 8*u2*v1**2*a33*
n2**3 - 8*i*u2*v1*v2*a33*n2**3 + u2*v1*v3**2*(4*a33**2*m1*n2 + 4*i*a33**2*m2*n2 
- 8*i*a33*b33*n2**2) - 8*i*u2*v1*v3*a33*n2**2*n3 + 4*u3**2*v3**2*a33**2*n2**2 + 
8*i*u3*v1*v3*a33*n2**3 + 8*u3*v2*v3*a33*n2**3 + u3*v3**3*(4*i*a33**2*m1*n2 - 4*
a33**2*m2*n2 + 8*a33*b33*n2**2) + 8*u3*v3**2*a33*n2**2*n3 + 8*i*v1*v2*n2**4 + v1
*v3**2*( - 4*a33*m1*n2**2 - 4*i*a33*m2*n2**2 + 8*i*b33*n2**3) + 8*i*v1*v3*n2**3*
n3 + 8*v2**2*n2**4 + v2*v3**2*(4*i*a33*m1*n2**2 - 4*a33*m2*n2**2 + 8*b33*n2**3) 
+ 8*v2*v3*n2**3*n3 + v3**4*( - a33**2*m1**2 - 2*i*a33**2*m1*m2 + a33**2*m2**2 + 
4*i*a33*b33*m1*n2 - 4*a33*b33*m2*n2 + 4*b33**2*n2**2) + v3**3*(4*i*a33*m1*n2*n3 
- 4*a33*m2*n2*n3 + 8*b33*n2**2*n3) + v3**2*(4*n2**4 + 4*n2**2*n3**2)$

FI=2*i*u1*v2*a33*n2 - 2*i*u2*v1*a33*n2 + 2*u3*v3*a33*n2 + 2*i*v1*n2**2 + 2*v2*n2
**2 + v3**2*(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v3*n2*n3$

FI=2*i*u1*v1**2*v2*a33*n2 + 2*i*u1*v2**3*a33*n2 + 2*i*u1*v2*v3**2*a33*n2 - 2*i*
u2*v1**3*a33*n2 - 2*i*u2*v1*v2**2*a33*n2 - 2*i*u2*v1*v3**2*a33*n2 + 2*u3*v1**2*
v3*a33*n2 + 2*u3*v2**2*v3*a33*n2 + 2*u3*v3**3*a33*n2 + 2*i*v1**3*n2**2 + 2*v1**2
*v2*n2**2 + v1**2*v3**2*(i*a33*m1 - a33*m2 + 2*b33*n2) + 2*v1**2*v3*n2*n3 + 2*i*
v1*v2**2*n2**2 + 2*i*v1*v3**2*n2**2 + 2*v2**3*n2**2 + v2**2*v3**2*(i*a33*m1 - 
a33*m2 + 2*b33*n2) + 2*v2**2*v3*n2*n3 + 2*v2*v3**2*n2**2 + v3**4*(i*a33*m1 - a33
*m2 + 2*b33*n2) + 2*v3**3*n2*n3$

FI= - 2*i*u1**2*v2*a33**2*n2**2 + 2*i*u1*u2*v1*a33**2*n2**2 - 2*u1*u2*v2*a33**2*
n2**2 - 2*u1*u3**2*v2*a33**3*n2 - 2*u1*u3*v2*a33**2*n2*n3 - 2*u1*u3*v3*a33**2*n2
**2 - 4*u1*v1**3*a33**2*c12*n2 + 4*i*u1*v1**2*v2*a33**2*c12*n2 - 8*u1*v1*v2**2*
a33**2*c12*n2 + u1*v1*v2*( - 2*a33**2*m1*n2 + 2*i*a33*b33*n2**2) - 4*u1*v1*v3**2
*a33**2*c12*n2 - 4*i*u1*v1*a33*n2**3 + u1*v2**2*( - 2*a33**2*m2*n2 + 2*a33*b33*
n2**2) + 2*i*u1*v2*v3**2*a33**2*c12*n2 + u1*v2*( - 4*a33*n2**3 + 2*a33*n2*n3**2)
 + u1*v3**2*( - i*a33**2*m1*n2 + a33**2*m2*n2 - 2*a33*b33*n2**2) - 2*u1*v3*a33*
n2**2*n3 + 2*u2**2*v1*a33**2*n2**2 + 2*u2*u3**2*v1*a33**3*n2 + 2*u2*u3*v1*a33**2
*n2*n3 + 2*i*u2*u3*v3*a33**2*n2**2 - 4*i*u2*v1**3*a33**2*c12*n2 + u2*v1**2*(2*
a33**2*m1*n2 - 2*i*a33*b33*n2**2) + u2*v1*v2*(2*a33**2*m2*n2 - 2*a33*b33*n2**2) 
- 2*i*u2*v1*v3**2*a33**2*c12*n2 - 2*u2*v1*a33*n2*n3**2 - 4*u2*v2**3*a33**2*c12*
n2 - 4*u2*v2*v3**2*a33**2*c12*n2 + u2*v3**2*( - a33**2*m1*n2 - i*a33**2*m2*n2 + 
2*i*a33*b33*n2**2) + 2*i*u2*v3*a33*n2**2*n3 + 2*i*u3**3*v3*a33**3*n2 - 2*u3**2*
v1*a33**2*n2**2 + 2*i*u3**2*v2*a33**2*n2**2 + u3**2*v3**2*( - a33**3*m1 - i*a33
**3*m2 + 2*i*a33**2*b33*n2) + 4*i*u3**2*v3*a33**2*n2*n3 + 4*i*u3*v1*v2*v3*a33**2
*c12*n2 + u3*v1*v3*(2*i*a33**2*m1*n2 + 2*a33*b33*n2**2) - 2*u3*v1*a33*n2**2*n3 -
 4*u3*v2**2*v3*a33**2*c12*n2 + u3*v2*v3*(2*i*a33**2*m2*n2 - 2*i*a33*b33*n2**2) +
 2*i*u3*v2*a33*n2**2*n3 - 2*u3*v3**3*a33**2*c12*n2 + u3*v3**2*( - a33**2*m1*n3 -
 i*a33**2*m2*n3 + 2*i*a33*b33*n2*n3) + 4*i*v1**3*a33*c12*n2**2 + v1**2*v3**2*(2*
i*a33**2*c12*m1 - 2*a33**2*c12*m2 + 4*a33*b33*c12*n2) + 4*v1**2*v3*a33*c12*n2*n3
 + 4*i*v1*v2**2*a33*c12*n2**2 + v1*v2*v3**2*( - 2*a33**2*c12*m1 - 2*i*a33**2*c12
*m2 + 4*i*a33*b33*c12*n2) + 4*i*v1*v2*v3*a33*c12*n2*n3 + v1*v2*(2*i*a33*m1*n2**2
 - 2*a33*m2*n2**2 + 4*b33*n2**3) + v1*v3**2*( - a33**2*m1**2 - i*a33**2*m1*m2 + 
3*i*a33*b33*m1*n2 - a33*b33*m2*n2 + 2*i*a33*c12*n2**2 + 2*b33**2*n2**2) + v1*v3*
(2*i*a33*m1*n2*n3 + 2*b33*n2**2*n3) + v1*( - 2*n2**4 + 2*n2**2*n3**2) + v2**2*(2
*a33*m1*n2**2 + 2*i*a33*m2*n2**2 - 4*i*b33*n2**3) + v2*v3**2*( - a33**2*m1*m2 - 
i*a33**2*m2**2 + a33*b33*m1*n2 + 3*i*a33*b33*m2*n2 + 2*a33*c12*n2**2 - 2*i*b33**
2*n2**2) + v2*v3*(2*i*a33*m2*n2*n3 - 2*i*b33*n2**2*n3) + v2*(2*i*n2**4 - 2*i*n2
**2*n3**2) + v3**4*(i*a33**2*c12*m1 - a33**2*c12*m2 + 2*a33*b33*c12*n2) + 2*v3**
3*a33*c12*n2*n3 + v3**2*(a33*m1*n2**2 + a33*m1*n3**2 - i*a33*m2*n2**2 + i*a33*m2
*n3**2 - 2*i*b33*n2*n3**2) + v3*(2*i*n2**3*n3 - 2*i*n2*n3**3)$