Solution 11 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r11=0


r12=0


r13=0


r14=0


r15=0


     m2*r316
r21=---------
       a33


r22=0


     m1*r316
r23=---------
       a33


r24=0


     n3*r316
r26=---------
       a33


r27=0


r28=0


r210=0


r212=0


r213=0


r214=0


r215=0


r216=0


r217=0


r218=0


r219=0


r220=0


     2*c23*r316 + m2*r425
r31=----------------------
             a33


r33=0


     2*c13*r316 + m1*r425
r34=----------------------
             a33


r36=0


     a33*r32 - c22*r316
r37=--------------------
            a33


r38=0


r39=0


      a33*r321 + b33*r316 + n3*r425
r310=-------------------------------
                   a33


r311=0


r312=0


r313=0


r314=0


r315=0


r317=0


r318=0


r319=0


r320=0


r322=0


r323=0


r324=0


r325=0


r326=0


r327=0


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


r335=0


r336=0


r337=0


r338=r321


r339=0


r340=0


r341=0


r342=0


r343=0


r344=0


r345=0


r346=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


     2*c23*r425
r41=------------
        a33


r43=0


r44=0


     2*c13*r425
r45=------------
        a33


     2*c12*r425
r46=------------
        a33


r47=0


r48=0


     a33*r42 - c22*r425
r49=--------------------
            a33


r410=0


r411=0


r412=0


r413=0


      a33*r474 + b33*r425
r415=---------------------
              a33


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r426=0


r427=0


r428=0


r429=0


r431=0


r432=0


r433=0


r435=0


r436=r474


r437=0


r438=0


r439=0


r440=0


r441=0


r442=0


r444=0


r445=0


r446=0


r447=0


r448=0


r449=0


r450=0


r451=0


r453=0


r454=0


r455=0


r456=0


r458=0


r459=0


r460=0


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r491=0


r492=0


r493=0


r494=0


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4107=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4116=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


n2=0


n1=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


     2*c12*r316
r35=------------
        a33


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r316, r40, r30, r20, r10, r42, r32, r321, r474, r425, 
m1, c22, c33, m2, m3, n3, b33, c12, c23, c13, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
c11,
n1,
n2}$

The system of equations related to the Hamiltonian HAM:

      2                                                                 2
HAM=u3 *a33 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1 + v2 *c22

                               2
     + 2*v2*v3*c23 + v2*m2 + v3 *c33 + v3*m3

has apart from the Hamiltonian and Casimirs the following 10 first integrals: 

     2   2            3            2        2   2                 2
FI=u3 *v3 *a33 + u3*v3 *b33 + u3*v3 *n3 - v1 *v3 *c22 + 2*v1*v2*v3 *c12

             3            2             3            2
    + 2*v1*v3 *c13 + v1*v3 *m1 + 2*v2*v3 *c23 + v2*v3 *m2

  = a product of the elements of: {v3,

   v3,

     2                             2
   u3 *a33 + u3*v3*b33 + u3*n3 - v1 *c22 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1

    + 2*v2*v3*c23 + v2*m2}

{HAM,FI} = 0



           2           2        3
FI=u1*v1*v3  + u2*v2*v3  + u3*v3

  = a product of the elements of: {v3,

   v3,

   u1*v1 + u2*v2 + u3*v3}

{HAM,FI} = 0



                              2
FI=u1*v1*v3 + u2*v2*v3 + u3*v3

  = a product of the elements of: {v3,u1*v1 + u2*v2 + u3*v3}

{HAM,FI} = 0



     2        2
FI=v1 *v3 + v2 *v3

  = a product of the elements of: {v3,v1 - i*v2,v1 + i*v2}

{HAM,FI} = 0



     2   2     2   2
FI=v1 *v3  + v2 *v3

  = a product of the elements of: {v3,

   v3,

   v1 - i*v2,

   v1 + i*v2}

{HAM,FI} = 0



FI=v3

which the program can not factorize further.

{HAM,FI} = 0



     2
FI=v3

  = a product of the elements of: {v3,v3}

{HAM,FI} = 0



     3
FI=v3

  = a product of the elements of: {v3,v3,v3}

{HAM,FI} = 0



     4
FI=v3

  = a product of the elements of: {v3,v3,v3,v3}

{HAM,FI} = 0



     2               2                    2
FI=u3 *v3*a33 + u3*v3 *b33 + u3*v3*n3 - v1 *v3*c22 + 2*v1*v2*v3*c12

             2                         2
    + 2*v1*v3 *c13 + v1*v3*m1 + 2*v2*v3 *c23 + v2*v3*m2

  = a product of the elements of: {v3,

     2                             2
   u3 *a33 + u3*v3*b33 + u3*n3 - v1 *c22 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1

    + 2*v2*v3*c23 + v2*m2}

{HAM,FI} = 0





And again in machine readable form:



HAM=u3**2*a33 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1 + v2**2*
c22 + 2*v2*v3*c23 + v2*m2 + v3**2*c33 + v3*m3$

FI=u3**2*v3**2*a33 + u3*v3**3*b33 + u3*v3**2*n3 - v1**2*v3**2*c22 + 2*v1*v2*v3**
2*c12 + 2*v1*v3**3*c13 + v1*v3**2*m1 + 2*v2*v3**3*c23 + v2*v3**2*m2$

FI=u1*v1*v3**2 + u2*v2*v3**2 + u3*v3**3$

FI=u1*v1*v3 + u2*v2*v3 + u3*v3**2$

FI=v1**2*v3 + v2**2*v3$

FI=v1**2*v3**2 + v2**2*v3**2$

FI=v3$

FI=v3**2$

FI=v3**3$

FI=v3**4$

FI=u3**2*v3*a33 + u3*v3**2*b33 + u3*v3*n3 - v1**2*v3*c22 + 2*v1*v2*v3*c12 + 2*v1
*v3**2*c13 + v1*v3*m1 + 2*v2*v3**2*c23 + v2*v3*m2$