Solution 29 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

      - m3*r216
r10=------------
        b21


r11=0


r12=0


r14=0


r15=0


                           2
      - 2*b33*c33*r216 + m3 *r448
r20=------------------------------
              2*b21*b33


r21=0


r22=0


r23=0


r24=0


r27=0


r28=0


r210=0


r212= - r216


r213=0


r214=0


r215=0


r217=0


r218=0


r219=0


r220=0


      - b33*m3*r420 + c33*m3*r448
r30=------------------------------
               b21*b33


r31=0


      - m3*r420
r32=------------
        b21


r33=0


r34=0


r35=0


r36=0


      - m3*r420
r37=------------
        b21


r38=0


r39=0


r311=0


      b21*r310 - c33*r328 - m3*r448
r312=-------------------------------
                   b21


r313=0


r314=0


      b21*r310 - c33*r328 - m3*r448
r315=-------------------------------
                   b21


      b33*r328 + m3*r453
r316=--------------------
             b21


r317=0


r318=0


r320=0


      m3*r448
r323=---------
        b33


r325=0


r326=0


r329=0


r330=0


r332=0


r333=0


r334=0


r335=0


       - m3*r448
r336=------------
         b33


r337=0


r338=0


r339=0


r340=0


r341=0


r342= - r328


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


                            2
      - 2*b33*c33*r420 + c33 *r448
r40=-------------------------------
               2*b21*b33


r41=0


      - c33*r420
r42=-------------
         b21


r43=0


r44=0


r45=0


r46=0


r47=0


r48=0


      - c33*r420
r49=-------------
         b21


r410=0


r411=0


r412=0


r413=0


       - b33*r420 + c33*r448
r415=------------------------
               b21


r416=0


       - b33*r420
r417=-------------
          b21


r418=0


r419=0


r421=0


       - b33*r420
r422=-------------
          b21


r423=0


r424=0


      b33*r448 + 2*c33*r453
r425=-----------------------
              2*b21


r426=0


r427=0


r428=0


r429=0


      b33*r453
r431=----------
        b21


r432=0


r433=0


r435=0


       - b33*r420 + c33*r448
r439=------------------------
               b33


r442=0


r444= - r420


r445=0


r450=0


r451=0


r454=0


r455=0


r458=0


      b21*r448
r460=----------
       2*b33


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


r470=0


      b33*r420 - c33*r448
r471=---------------------
              b33


r472=0


r473=r420


r474=0


r475=0


r476=0


r477=0


r478=2*r420


r479=0


r480=0


r481= - r448


r482=0


      b21*r448
r483=----------
        b33


r484=0


r485=0


r486=0


r487= - r453


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


       b21*r448
r4107=----------
        2*b33


r4108=0


r4109=0


       b21*r448
r4110=----------
         b33


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


m2=0


m1=0


n2=0


n1=0


c23=0


c22=0


c13=0


c12=0


c11=0


b32=0


b31=0


b23=0


b22=0


b13=0


b12= - b21


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


      - b33*r216 + m3*r328
r26=-----------------------
              b21


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r216, r13, r319, r310, r420, r328, r448, r453, m3, c33, 
n3, b21, b33, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33,b33,b21}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12 + b21,
b13,
b22,
b23,
b31,
b32,
c11,
c12,
c13,
c22,
c23,
n1,
n2,
m1,
m2}$

The system of equations related to the Hamiltonian HAM:

                                 2                             2
HAM= - u1*v2*b21 + u2*v1*b21 + u3 *a33 + u3*v3*b33 + u3*n3 + v3 *c33 + v3*m3

has apart from the Hamiltonian and Casimirs the following 8 first integrals: 

           2               2            3            2   2         2
FI= - u1*u3 *v2*b21 + u2*u3 *v1*b21 + u3 *v3*b33 + u3 *v3 *c33 + u3 *v3*m3

  = a product of the elements of: { - u3,

   u3,

                                         2
   u1*v2*b21 - u2*v1*b21 - u3*v3*b33 - v3 *c33 - v3*m3}

{HAM,FI} = 0



       2   2    2     2   2    2                    2
FI=2*u1 *v1 *b21  + u1 *v2 *b21  + 2*u1*u3*v1*v3*b21  - 2*u1*u3*v2*v3*b21*b33

                2                                 2   2    2
    - 2*u1*v2*v3 *b21*c33 - 2*u1*v2*v3*b21*m3 + u2 *v1 *b21

                                        2
    + 2*u2*u3*v1*v3*b21*b33 + 2*u2*v1*v3 *b21*c33 + 2*u2*v1*v3*b21*m3

        2   2    2          2                 2                 3
    + u3 *v3 *b33  - 2*u3*v1 *b33*m3 - 2*u3*v2 *b33*m3 + 2*u3*v3 *b33*c33

        4    2       3            2   2
    + v3 *c33  + 2*v3 *c33*m3 + v3 *m3

  = a product of the elements of: {2,

                     2   2    2
     2   2    2    u1 *v2 *b21                    2
   u1 *v1 *b21  + -------------- + u1*u3*v1*v3*b21  - u1*u3*v2*v3*b21*b33
                        2

                                               2   2    2
              2                              u2 *v1 *b21
    - u1*v2*v3 *b21*c33 - u1*v2*v3*b21*m3 + -------------- + u2*u3*v1*v3*b21*b33
                                                  2

                                               2   2    2
              2                              u3 *v3 *b33          2
    + u2*v1*v3 *b21*c33 + u2*v1*v3*b21*m3 + -------------- - u3*v1 *b33*m3
                                                  2

                                          4    2                    2   2
           2               3            v3 *c33       3           v3 *m3
    - u3*v2 *b33*m3 + u3*v3 *b33*c33 + ---------- + v3 *c33*m3 + ---------}
                                           2                         2

{HAM,FI} = {4,

            b21,

            b21,

            u1*v1 + u2*v2 + u3*v3,

                            u1*v2*v3*b33     u1*v2*n3
            u1*u3*v2*a33 + -------------- + ---------- + u2*u3*v1*a33
                                 2              2

                                                      2
                u2*v1*v3*b33     u2*v1*n3      - u3*v1 *b21     u3*v1*v2*b33
             + -------------- + ---------- + --------------- + --------------
                     2              2               2                2

                               v1*v2*m3
             + v1*v2*v3*c33 + ----------}
                                  2



                                      2               2            2
FI= - u1*u3*v2*b21 + u2*u3*v1*b21 + u3 *v3*b33 - u3*v1 *c33 - u3*v2 *c33

    + u3*v3*m3

  = a product of the elements of: { - u3,

                                         2         2
   u1*v2*b21 - u2*v1*b21 - u3*v3*b33 + v1 *c33 + v2 *c33 - v3*m3}

{HAM,FI} = 0



          2               3               2            3               2
FI=2*u1*v1 *v2*b21 + u1*v2 *b21 + u1*v2*v3 *b21 - u2*v1 *b21 - u2*v1*v3 *b21

           2                                 2               3         2   2
    - u3*v1 *v3*b33 + u3*v1*v2*v3*b21 - u3*v2 *v3*b33 - u3*v3 *b33 - v1 *v3 *c33

        2           2   2         2           4         3
    - v1 *v3*m3 - v2 *v3 *c33 - v2 *v3*m3 - v3 *c33 - v3 *m3

  = a product of the elements of: {2,

                         3                 2                 3
        2           u1*v2 *b21     u1*v2*v3 *b21      - u2*v1 *b21
   u1*v1 *v2*b21 + ------------ + --------------- + ---------------
                        2                2                 2

                  2                 2
        - u2*v1*v3 *b21      - u3*v1 *v3*b33     u3*v1*v2*v3*b21
    + ------------------ + ------------------ + -----------------
              2                    2                    2

               2                    3              2   2              2
        - u3*v2 *v3*b33      - u3*v3 *b33      - v1 *v3 *c33      - v1 *v3*m3
    + ------------------ + --------------- + ---------------- + --------------
              2                   2                 2                 2

            2   2              2                4              3
        - v2 *v3 *c33      - v2 *v3*m3      - v3 *c33      - v3 *m3
    + ---------------- + -------------- + ------------ + -----------}
             2                 2               2              2

{HAM,FI} = {2,

             - u1*v1 - u2*v2 - u3*v3,

            b21,

                                         2              2
                 2            2        v1 *v3*b33     v1 *n3
            u3*v1 *a33 - u3*v2 *a33 + ------------ + -------- + v1*v2*v3*b21
                                           2            2

                     2                 2
                 - v2 *v3*b33      - v2 *n3
             + --------------- + -----------}
                      2               2



        2        2        2
FI=u3*v1  + u3*v2  + u3*v3

                                     2     2     2
  = a product of the elements of: {v1  + v2  + v3 ,u3}

{HAM,FI} = 0



     3
FI=u3

  = a product of the elements of: {u3,u3,u3}

{HAM,FI} = 0



FI=u3

which the program can not factorize further.

{HAM,FI} = 0



                                         2
FI=u1*v2*b21 - u2*v1*b21 - u3*v3*b33 - v3 *c33 - v3*m3

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM= - u1*v2*b21 + u2*v1*b21 + u3**2*a33 + u3*v3*b33 + u3*n3 + v3**2*c33 + v3*m3
$

FI= - u1*u3**2*v2*b21 + u2*u3**2*v1*b21 + u3**3*v3*b33 + u3**2*v3**2*c33 + u3**2
*v3*m3$

FI=2*u1**2*v1**2*b21**2 + u1**2*v2**2*b21**2 + 2*u1*u3*v1*v3*b21**2 - 2*u1*u3*v2
*v3*b21*b33 - 2*u1*v2*v3**2*b21*c33 - 2*u1*v2*v3*b21*m3 + u2**2*v1**2*b21**2 + 2
*u2*u3*v1*v3*b21*b33 + 2*u2*v1*v3**2*b21*c33 + 2*u2*v1*v3*b21*m3 + u3**2*v3**2*
b33**2 - 2*u3*v1**2*b33*m3 - 2*u3*v2**2*b33*m3 + 2*u3*v3**3*b33*c33 + v3**4*c33
**2 + 2*v3**3*c33*m3 + v3**2*m3**2$

FI= - u1*u3*v2*b21 + u2*u3*v1*b21 + u3**2*v3*b33 - u3*v1**2*c33 - u3*v2**2*c33 +
 u3*v3*m3$

FI=2*u1*v1**2*v2*b21 + u1*v2**3*b21 + u1*v2*v3**2*b21 - u2*v1**3*b21 - u2*v1*v3
**2*b21 - u3*v1**2*v3*b33 + u3*v1*v2*v3*b21 - u3*v2**2*v3*b33 - u3*v3**3*b33 - 
v1**2*v3**2*c33 - v1**2*v3*m3 - v2**2*v3**2*c33 - v2**2*v3*m3 - v3**4*c33 - v3**
3*m3$

FI=u3*v1**2 + u3*v2**2 + u3*v3**2$

FI=u3**3$

FI=u3$

FI=u1*v2*b21 - u2*v1*b21 - u3*v3*b33 - v3**2*c33 - v3*m3$