Solution 12 to problem over
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Expressions
The solution is given through the following expressions:
r11=0
r12=0
r13=0
r14=0
r15=0
m2*r35
r21=--------
2*c12
r22=0
i*m2*r35
r23=----------
2*c12
r24=0
r27=0
r28=0
r210=0
2*i*c12*r26 - i*n3*r35
r212=------------------------
2*c12
r213=0
r214=0
r215=0
- 2*i*c12*r26 + i*n3*r35
r216=---------------------------
2*c12
r217=0
r218=0
r219=0
r220=0
r31=0
r33=0
r34=0
r36=0
r37=r32 + i*r35
r38=0
r39=0
r310=i*r336 + r338
r311=0
r312=0
r313=0
r314=0
r315=0
a33*r35
r316=---------
2*c12
r317=0
r318=0
r319=0
r320=0
r321=r338
r322=0
r323= - r336
r324=0
r325=0
r326=0
r327=0
r328=0
r329=0
r330=0
r331=0
r332=0
r333=0
r334=0
r335=0
r337=0
r339=0
r340=0
r341=0
r342=0
r343=0
r344=0
r345=0
r346=0
r347=0
r348=0
r349=0
r350=0
r351=0
r352=0
r353=0
r354=0
r355=0
m3=0
m1=i*m2
n2=0
n1=0
c33= - i*c12
c23=0
c22= - 2*i*c12
c13=0
c11=0
b33=0
b32=0
b31=0
b23=0
b22=0
b21=0
b13=0
b12=0
b11=0
a23=0
a22=0
a13=0
a12=0
a11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r30, r20, r10, r32, r26, r338, r336, r35, m2, n3, c12,
a33
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{a33,r336}
Relevance for the application:
The new Hamiltonian in form of a list of vanishing expressions:
{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c13,
2*i*c12 + c22,
c23,
i*c12 + c33,
n1,
n2,
m1 - i*m2,
m3}$
The system of equations related to the Hamiltonian HAM:
2 2 2
HAM=u3 *a33 + u3*n3 + 2*v1*v2*c12 + i*v1*m2 - 2*i*v2 *c12 + v2*m2 - i*v3 *c12
has apart from the Hamiltonian and Casimirs the following 8 first integrals:
2 2
FI=i*u1*v2*n3 - i*u2*v1*n3 + u3 *v3*a33 + 2*i*v1 *v3*c12 + 2*v1*v2*v3*c12
+ i*v1*v3*m2 + v2*v3*m2
which the program can not factorize further.
{HAM,FI} = 0
2
FI=u1*v2*v3 - u2*v1*v3 + i*u3*v3
= a product of the elements of: {v3,u1*v2 - u2*v1 + i*u3*v3}
{HAM,FI} = 0
2
FI=u1*v1*v3 + u2*v2*v3 + u3*v3
= a product of the elements of: {v3,u1*v1 + u2*v2 + u3*v3}
{HAM,FI} = 0
FI= - i*u1*v2 + i*u2*v1 + u3*v3
= a product of the elements of: { - i,u1*v2 - u2*v1 + i*u3*v3}
{HAM,FI} = 0
2 2
FI=v1 *v3 + v2 *v3
= a product of the elements of: {v3,v1 - i*v2,v1 + i*v2}
{HAM,FI} = 0
FI=v3
which the program can not factorize further.
{HAM,FI} = 0
2
FI=v3
= a product of the elements of: {v3,v3}
{HAM,FI} = 0
3
FI=v3
= a product of the elements of: {v3,v3,v3}
{HAM,FI} = 0
And again in machine readable form:
HAM=u3**2*a33 + u3*n3 + 2*v1*v2*c12 + i*v1*m2 - 2*i*v2**2*c12 + v2*m2 - i*v3**2*
c12$
FI=i*u1*v2*n3 - i*u2*v1*n3 + u3**2*v3*a33 + 2*i*v1**2*v3*c12 + 2*v1*v2*v3*c12 +
i*v1*v3*m2 + v2*v3*m2$
FI=u1*v2*v3 - u2*v1*v3 + i*u3*v3**2$
FI=u1*v1*v3 + u2*v2*v3 + u3*v3**2$
FI= - i*u1*v2 + i*u2*v1 + u3*v3$
FI=v1**2*v3 + v2**2*v3$
FI=v3$
FI=v3**2$
FI=v3**3$