Solution 4 to problem over
Remaining equations |
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Equations
The following unsolved equations remain:
2 2
0=a22 + a23
Expressions
The solution is given through the following expressions:
1 2 1 2
---*a22 *r21 - ---*a23 *r21
2 2
r22=-----------------------------
a22*a23
r23=0
r24=0
1
- ---*a23*r21
2
r25=----------------
a22
2 2
a22 *r217 - a23 *r217
r26=-----------------------
2
a22
- a23*r217
r27=-------------
a22
1 2 1 2
- ---*a22 *r213 + ---*a23 *r213
2 2
r29=----------------------------------
a22*a23
- a23*r217
r210=-------------
a22
- a23*r28
r212=------------
a22
r215= - r28
a23*r28
r216=---------
a22
r218=0
r219=0
1
- ---*a22*r213
2
r220=-----------------
a23
c33=0
c23=0
c22=0
c13=0
c12=0
b33=0
b32=0
b31=0
b13=0
b12=0
b11=0
2
a23
a33=------
a22
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r21, r28, r217, r213, a22, a23
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{a22,a23}
Relevance for the application:
Modulo the following equation:
2 2
0=a22 + a23
the system of equations related to the Hamiltonian HAM:
2 2 2 2
u2 *a22 + 2*u2*u3*a22*a23 + u3 *a23
HAM=---------------------------------------
a22
has apart from the Hamiltonian and Casimirs the following 4 first integrals:
2 2 2 2 2
FI= - u1 *a22 + 2*u2*u3*a22*a23 + u3 *( - a22 + a23 )
{HAM,FI} = 0
2 2 2
FI=u1*v1*a22 - u2*v3*a22*a23 - u3*v2*a22*a23 + u3*v3*(a22 - a23 )
{HAM,FI} = 0
FI=u1*v2*a23 - u1*v3*a22 - u2*v1*a23 + u3*v1*a22
{HAM,FI} = 0
2 2 2 2 2
FI= - v1 *a23 + v2 *(a22 - a23 ) + 2*v2*v3*a22*a23
{HAM,FI} = 0
And again in machine readable form:
HAM=(u2**2*a22**2 + 2*u2*u3*a22*a23 + u3**2*a23**2)/a22$
FI= - u1**2*a22**2 + 2*u2*u3*a22*a23 + u3**2*( - a22**2 + a23**2)$
FI=u1*v1*a22**2 - u2*v3*a22*a23 - u3*v2*a22*a23 + u3*v3*(a22**2 - a23**2)$
FI=u1*v2*a23 - u1*v3*a22 - u2*v1*a23 + u3*v1*a22$
FI= - v1**2*a23**2 + v2**2*(a22**2 - a23**2) + 2*v2*v3*a22*a23$