Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
       2      2
0=4*a23  + a33


Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


      1
     ---*n3*r213
      2
r13=-------------
         a23


      1
     ---*n2*r213
      2
r14=-------------
         a23


      1
     ---*n1*r213
      2
r15=-------------
         a23


r20=0


r21=0


r23=0


r24=0


r25=0


r26=0


r27=0


r28=0


r210=0


r212=0


          1
       - ---*a33*r213
          2
r214=-----------------
            a23


r215=0


r216=0


r217=0


r218=0


r219=0


          1
       - ---*a33*r213
          2
r220=-----------------
            a23


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


       1
      ---*n3*r450
       2
r310=-------------
          a23


r311=0


       1
      ---*n3*r450
       2
r312=-------------
          a23


r313=0


r314=0


       1
      ---*n3*r450
       2
r315=-------------
          a23


r316=0


r317=0


r318=0


r319=0


       1
      ---*n2*r450
       2
r320=-------------
          a23


r321=0


       1
      ---*n2*r450
       2
r322=-------------
          a23


r323=0


r324=0


       1
      ---*n2*r450
       2
r325=-------------
          a23


r326=0


r327=0


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


       1
      ---*n1*r450
       2
r335=-------------
          a23


r336=0


       1
      ---*n1*r450
       2
r337=-------------
          a23


r338=0


r339=0


       1
      ---*n1*r450
       2
r340=-------------
          a23


r341=0


r342=0


r343=0


r344=0


r345=0


r346=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


       1
      ---*a33*r450
       2
r425=--------------
          a23


r426=0


r428=0


r429=0


r430=0


r431=0


r432=0


r433=0


r435=0


r436=0


r437=0


r439=0


r440=0


r441=0


r442=0


r443=0


r444=0


r445=r450


      a33*r450
r446=----------
        a23


r447=r450


r448=0


r449=0


r451=0


r453=0


r454=0


          1
       - ---*a33*r450
          2
r455=-----------------
            a23


r456=0


r458=0


r459=0


          1
       - ---*a33*r450
          2
r460=-----------------
            a23


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


      a33*r450
r483=----------
        a23


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r491=0


r492=0


r493=0


      a33*r450
r494=----------
        a23


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


           1
        - ---*a33*r450
           2
r4105=-----------------
             a23


r4106=0


           1
        - ---*a33*r450
           2
r4107=-----------------
             a23


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4116=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


m3=0


m2=0


m1=0


c33=0


c23=0


c22=0


c13=0


c12=0


b33=0


b23=0


b13=0


b12=0


b11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r213, r450, n1, n3, n2, a33, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33,r450,a23}


Relevance for the application:

Modulo the following equation:

       2      2
0=4*a23  + a33


the system of equations related to the Hamiltonian HAM:

                                    2
HAM=u1*n1 + 2*u2*u3*a23 + u2*n2 + u3 *a33 + u3*n3

has apart from the Hamiltonian and Casimirs the following 2 first integrals: 

       1    2   2        1    2   2
FI= - ---*u1 *v2 *a33 - ---*u1 *v3 *a33 + u1*u2*v1*v2*a33 + u1*u3*v1*v3*a33
       2                 2

       1       2       1       2       1       2       1    2   2
    + ---*u1*v1 *n1 + ---*u1*v2 *n1 + ---*u1*v3 *n1 - ---*u2 *v1 *a33
       2               2               2               2

       1    2   2               2               2
    - ---*u2 *v3 *a33 + u2*u3*v1 *a23 + u2*u3*v2 *a23 + u2*u3*v2*v3*a33
       2

              2        1       2       1       2       1       2
    + u2*u3*v3 *a23 + ---*u2*v1 *n2 + ---*u2*v2 *n2 + ---*u2*v3 *n2
                       2               2               2

       1    2   2        1       2       1       2       1       2
    + ---*u3 *v3 *a33 + ---*u3*v1 *n3 + ---*u3*v2 *n3 + ---*u3*v3 *n3
       2                 2               2               2

{HAM,FI} = 0



       1    2        1           1    2                    1           1
FI= - ---*u1 *a33 + ---*u1*n1 - ---*u2 *a33 + u2*u3*a23 + ---*u2*n2 + ---*u3*n3
       2             2           2                         2           2

{HAM,FI} = 0





And again in machine readable form:



HAM=u1*n1 + 2*u2*u3*a23 + u2*n2 + u3**2*a33 + u3*n3$

FI= - 1/2*u1**2*v2**2*a33 - 1/2*u1**2*v3**2*a33 + u1*u2*v1*v2*a33 + u1*u3*v1*v3*
a33 + 1/2*u1*v1**2*n1 + 1/2*u1*v2**2*n1 + 1/2*u1*v3**2*n1 - 1/2*u2**2*v1**2*a33 
- 1/2*u2**2*v3**2*a33 + u2*u3*v1**2*a23 + u2*u3*v2**2*a23 + u2*u3*v2*v3*a33 + u2
*u3*v3**2*a23 + 1/2*u2*v1**2*n2 + 1/2*u2*v2**2*n2 + 1/2*u2*v3**2*n2 + 1/2*u3**2*
v3**2*a33 + 1/2*u3*v1**2*n3 + 1/2*u3*v2**2*n3 + 1/2*u3*v3**2*n3$

FI= - 1/2*u1**2*a33 + 1/2*u1*n1 - 1/2*u2**2*a33 + u2*u3*a23 + 1/2*u2*n2 + 1/2*u3
*n3$