Solution 1 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


r13=0


r14=0


r15=0


r20=0


r21=0


r22=0


r23=0


r24=0


r26=0


r27=0


r28=0


r29=0


r210=0


r212=0


r213=0


r214=0


r215=0


r216=0


r217=0


r218=0


r219=0


      1
     ---*m3*r483
      2
r30=-------------
         a22


      1
     ---*m2*r483
      2
r31=-------------
         a22


      1
     ---*m3*r483
      2
r32=-------------
         a22


      1
     ---*m2*r483
      2
r33=-------------
         a22


      1
     ---*m1*r483
      2
r34=-------------
         a22


r35=0


      1
     ---*m1*r483
      2
r36=-------------
         a22


      1
     ---*m3*r483
      2
r37=-------------
         a22


      1
     ---*m2*r483
      2
r38=-------------
         a22


      1
     ---*m1*r483
      2
r39=-------------
         a22


       1
      ---*n3*r483
       2
r310=-------------
          a22


          1
       - ---*n2*r483
          2
r311=----------------
           a22


       1
      ---*n3*r483
       2
r312=-------------
          a22


r313=0


r314=0


       1
      ---*n3*r483
       2
r315=-------------
          a22


r316=0


r317=0


r318=0


r319=0


       1
      ---*n2*r483
       2
r320=-------------
          a22


r323=0


       1
      ---*n2*r483
       2
r325=-------------
          a22


r326=0


r328=0


r329=0


r330=0


r332=0


r333=0


r334=0


       1
      ---*n1*r483
       2
r335=-------------
          a22


r336=0


       1
      ---*n1*r483
       2
r337=-------------
          a22


r338=0


          1
       - ---*n2*r483
          2
r339=----------------
           a22


       1
      ---*n1*r483
       2
r340=-------------
          a22


r341=0


r342=0


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


      1
     ---*c33*r483
      2
r40=--------------
         a22


     c23*r483
r41=----------
       a22


      1              1
     ---*c22*r483 + ---*c33*r483
      2              2
r42=-----------------------------
                 a22


     c23*r483
r43=----------
       a22


      1
     ---*c22*r483
      2
r44=--------------
         a22


     c13*r483
r45=----------
       a22


     c12*r483
r46=----------
       a22


     c13*r483
r47=----------
       a22


     c12*r483
r48=----------
       a22


      1
     ---*c33*r483
      2
r49=--------------
         a22


      c23*r483
r410=----------
        a22


       1
      ---*c22*r483
       2
r411=--------------
          a22


      c13*r483
r412=----------
        a22


      c12*r483
r413=----------
        a22


       1
      ---*b33*r483
       2
r415=--------------
          a22


       1
      ---*b32*r483
       2
r416=--------------
          a22


       1
      ---*b33*r483
       2
r417=--------------
          a22


       1
      ---*b32*r483
       2
r418=--------------
          a22


       1
      ---*b31*r483
       2
r419=--------------
          a22


          1
       - ---*b21*r483
          2
r420=-----------------
            a22


       1
      ---*b31*r483
       2
r421=--------------
          a22


       1
      ---*b33*r483
       2
r422=--------------
          a22


       1
      ---*b32*r483
       2
r423=--------------
          a22


       1
      ---*b31*r483
       2
r424=--------------
          a22


       1              1
      ---*a22*r483 + ---*a33*r483
       2              2
r425=-----------------------------
                  a22


r426=0


       1
      ---*a33*r483
       2
r427=--------------
          a22


r428=0


r429=0


       1
      ---*a33*r483
       2
r430=--------------
          a22


r431=0


r432=0


r433=0


r434=0


r435=0


       1
      ---*b21*r483
       2
r439=--------------
          a22


r442=0


       1
      ---*b21*r483
       2
r444=--------------
          a22


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


      1
r455=---*r483
      2


r458=0


      1
r460=---*r483
      2


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


       1
      ---*b11*r483
       2
r474=--------------
          a22


r475=0


       1
      ---*b11*r483
       2
r476=--------------
          a22


r477=0


          1
       - ---*b21*r483
          2
r478=-----------------
            a22


       1
      ---*b11*r483
       2
r479=--------------
          a22


r480=0


r481=0


r482=0


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


          1
r4105= - ---*r483
          2


r4106=0


          1
r4107= - ---*r483
          2


r4108=0


r4109=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


c11=0


b23=0


b22=0


b13=0


b12=0


a23=0


a13=0


a12=0


a11= - a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r483, m3, m1, c33, m2, c22, c13, n3, n1, n2, c23, c12, 
b21, b33, b11, b32, b31, a33, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{{m1,m2,m3,n1,n2,n3},

 {b11*r483,

  b21*r483,

  r483,

   1              1
  ---*a22*r483 + ---*a33*r483,
   2              2

  b33*r483,

  c12*r483,

  c13*r483,

  c22*r483,

   1              1
  ---*c22*r483 + ---*c33*r483,
   2              2

  c23*r483,

  c33*r483},

 a11,

 a22 + a33,

 a22,

 a33,

 a22 - a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 + a22,
a12,
a13,
a23,
b12,
b13,
b22,
b23,
c11}$

This solution contains the c111_d4_s1_112 case.

This solution is contained in the c111_d4_s1_112 case.

This solution contains the c111_d4_s1_11 case.

This solution is contained in the c111_d4_s1_11 case.

This solution contains the c111_d4_s1_12 case.

This solution is contained in the c111_d4_s1_12 case.

This solution contains the c111_d4_s1_1 case.

This solution is contained in the c111_d4_s1_1 case.

This solution contains the c111_d4_s1_2 case.

This solution is contained in the c111_d4_s1_2 case.

This solution contains the c111_d4_s1_ case.

This solution is contained in the c111_d4_s1_ case.

This solution contains the steklov_lyapunov_112 case.

This solution is contained in the steklov_lyapunov_112 case.

This solution contains the steklov_lyapunov_11 case.

This solution is contained in the steklov_lyapunov_11 case.

This solution contains the steklov_lyapunov_12 case.

This solution is contained in the steklov_lyapunov_12 case.

This solution contains the steklov_lyapunov_1 case.

This solution is contained in the steklov_lyapunov_1 case.

This solution contains the steklov_lyapunov_2 case.

This solution is contained in the steklov_lyapunov_2 case.

This solution contains the steklov_lyapunov_ case.

This solution is contained in the steklov_lyapunov_ case.

This solution contains the clebsch_ case.

This solution is contained in the clebsch_ case.

This solution contains the chaplygin_wolf_efimovskaja_d3_12 case.

This solution is contained in the chaplygin_wolf_efimovskaja_d3_12 case.

This solution contains the chaplygin_wolf_efimovskaja_d3_1 case.

This solution is contained in the chaplygin_wolf_efimovskaja_d3_1 case.

This solution contains the chaplygin_wolf_efimovskaja_d3_ case.

This solution is contained in the chaplygin_wolf_efimovskaja_d3_ case.

This solution contains the chaplygin_wolf_efimovskaja_d4_12 case.

This solution is contained in the chaplygin_wolf_efimovskaja_d4_12 case.

This solution contains the chaplygin_wolf_efimovskaja_d4_1 case.

This solution is contained in the chaplygin_wolf_efimovskaja_d4_1 case.

This solution contains the chaplygin_wolf_efimovskaja_d4_ case.

This solution is contained in the chaplygin_wolf_efimovskaja_d4_ case.

This solution contains the wolf_efimovskaya_s4_12 case.

This solution is contained in the wolf_efimovskaya_s4_12 case.

This solution contains the wolf_efimovskaya_s4_1 case.

This solution is contained in the wolf_efimovskaya_s4_1 case.

This solution contains the wolf_efimovskaya_s4_ case.

This solution is contained in the wolf_efimovskaya_s4_ case.

This solution contains the c111_d2_s1_112 case.

This solution is contained in the c111_d2_s1_112 case.

This solution contains the c111_d2_s1_11 case.

This solution is contained in the c111_d2_s1_11 case.

This solution contains the c111_d2_s1_12 case.

This solution is contained in the c111_d2_s1_12 case.

This solution contains the c111_d2_s1_1 case.

This solution is contained in the c111_d2_s1_1 case.

This solution contains the c111_d2_s1_2 case.

This solution is contained in the c111_d2_s1_2 case.

This solution contains the c111_d2_s1_ case.

This solution is contained in the c111_d2_s1_ case.

The system of equations related to the Hamiltonian HAM:

         2                             2                             2
HAM= - u1 *a22 + u1*v1*b11 + u1*n1 + u2 *a22 + u2*v1*b21 + u2*n2 + u3 *a33

     + u3*v1*b31 + u3*v2*b32 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13

                 2                               2
     + v1*m1 + v2 *c22 + 2*v2*v3*c23 + v2*m2 + v3 *c33 + v3*m3

has apart from the Hamiltonian and Casimirs only the following first integral: 

       1    2   2        1    2   2                          1       3
FI= - ---*u1 *v2 *a22 - ---*u1 *v3 *a22 + u1*u3*v1*v3*a22 + ---*u1*v1 *b11
       2                 2                                   2

       1       2           1       2       1          2        1
    - ---*u1*v1 *v2*b21 + ---*u1*v1 *n1 + ---*u1*v1*v2 *b11 - ---*u1*v1*v2*n2
       2                   2               2                   2

       1          2        1       2       1       2       1    2   2
    + ---*u1*v1*v3 *b11 + ---*u1*v2 *n1 + ---*u1*v3 *n1 + ---*u2 *v1 *a22
       2                   2               2               2

       1    2   2        1       3        1       2       1          2
    + ---*u2 *v3 *a22 + ---*u2*v1 *b21 + ---*u2*v1 *n2 + ---*u2*v1*v3 *b21
       2                 2                2               2

       1       2       1    2   2        1    2   2
    + ---*u2*v3 *n2 + ---*u3 *v1 *a33 + ---*u3 *v2 *a33
       2               2                 2

        2   2   1         1          1       3        1       2
    + u3 *v3 *(---*a22 + ---*a33) + ---*u3*v1 *b31 + ---*u3*v1 *v2*b32
                2         2          2                2

       1       2           1       2       1          2
    + ---*u3*v1 *v3*b33 + ---*u3*v1 *n3 + ---*u3*v1*v2 *b31
       2                   2               2

       1                     1          2        1       3
    - ---*u3*v1*v2*v3*b21 + ---*u3*v1*v3 *b31 + ---*u3*v2 *b32
       2                     2                   2

       1       2           1       2       1          2        1
    + ---*u3*v2 *v3*b33 + ---*u3*v2 *n3 + ---*u3*v2*v3 *b32 - ---*u3*v2*v3*n2
       2                   2               2                   2

       1       3        1       2        3            3           1    3
    + ---*u3*v3 *b33 + ---*u3*v3 *n3 + v1 *v2*c12 + v1 *v3*c13 + ---*v1 *m1
       2                2                                         2

       1    2   2         2              1    2          1    2   2
    + ---*v1 *v2 *c22 + v1 *v2*v3*c23 + ---*v1 *v2*m2 + ---*v1 *v3 *c33
       2                                 2               2

       1    2              3            2           1       2              2
    + ---*v1 *v3*m3 + v1*v2 *c12 + v1*v2 *v3*c13 + ---*v1*v2 *m1 + v1*v2*v3 *c12
       2                                            2

           3        1       2       1    4         3           1    3
    + v1*v3 *c13 + ---*v1*v3 *m1 + ---*v2 *c22 + v2 *v3*c23 + ---*v2 *m2
                    2               2                          2

        2   2   1         1          1    2              3        1       2
    + v2 *v3 *(---*c22 + ---*c33) + ---*v2 *v3*m3 + v2*v3 *c23 + ---*v2*v3 *m2
                2         2          2                            2

       1    4        1    3
    + ---*v3 *c33 + ---*v3 *m3
       2             2

                                       1
  = a product of the elements of: { - ---,
                                       2

     2   2         2   2                                3            2
   u1 *v2 *a22 + u1 *v3 *a22 - 2*u1*u3*v1*v3*a22 - u1*v1 *b11 + u1*v1 *v2*b21

           2              2                             2            2
    - u1*v1 *n1 - u1*v1*v2 *b11 + u1*v1*v2*n2 - u1*v1*v3 *b11 - u1*v2 *n1

           2        2   2         2   2            3            2
    - u1*v3 *n1 - u2 *v1 *a22 - u2 *v3 *a22 - u2*v1 *b21 - u2*v1 *n2

              2            2        2   2         2   2
    - u2*v1*v3 *b21 - u2*v3 *n2 - u3 *v1 *a33 - u3 *v2 *a33

        2   2                       3            2               2
    + u3 *v3 *( - a22 - a33) - u3*v1 *b31 - u3*v1 *v2*b32 - u3*v1 *v3*b33

           2              2                                 2            3
    - u3*v1 *n3 - u3*v1*v2 *b31 + u3*v1*v2*v3*b21 - u3*v1*v3 *b31 - u3*v2 *b32

           2               2              2                          3
    - u3*v2 *v3*b33 - u3*v2 *n3 - u3*v2*v3 *b32 + u3*v2*v3*n2 - u3*v3 *b33

           2          3              3            3        2   2
    - u3*v3 *n3 - 2*v1 *v2*c12 - 2*v1 *v3*c13 - v1 *m1 - v1 *v2 *c22

          2               2           2   2         2                3
    - 2*v1 *v2*v3*c23 - v1 *v2*m2 - v1 *v3 *c33 - v1 *v3*m3 - 2*v1*v2 *c12

             2               2                2              3            2
    - 2*v1*v2 *v3*c13 - v1*v2 *m1 - 2*v1*v2*v3 *c12 - 2*v1*v3 *c13 - v1*v3 *m1

        4           3            3        2   2                    2
    - v2 *c22 - 2*v2 *v3*c23 - v2 *m2 + v2 *v3 *( - c22 - c33) - v2 *v3*m3

             3            2        4         3
    - 2*v2*v3 *c23 - v2*v3 *m2 - v3 *c33 - v3 *m3}

             1
{HAM,FI} = {---,
             2

            u1*v1 + u2*v2 + u3*v3,

                          2                  2
            4*u1*u2*v3*a22  + u1*u3*v2*(4*a22  + 4*a22*a33) + 2*u1*v1*v2*a22*b31

                                           2
             + 2*u1*v1*v3*a22*b21 + 2*u1*v2 *a22*b32

             + u1*v2*v3*( - 2*a22*b11 + 2*a22*b33) + 2*u1*v2*a22*n3

                                                            2
             + 2*u1*v3*a22*n2 + 4*u2*u3*v1*a22*a33 + 2*u2*v1 *a22*b31

             + 2*u2*v1*v2*a22*b32 + u2*v1*v3*( - 2*a22*b11 + 2*a22*b33)

                                                        2
             + 2*u2*v1*a22*n3 - 2*u2*v3*a22*n1 + 2*u3*v1 *a33*b21

             + u3*v1*v2*( - 2*a22*b11 + 2*a22*b33) + 2*u3*v1*a33*n2

                      2
             - 2*u3*v2 *a33*b21 - 2*u3*v2*v3*a22*b31 - 2*u3*v2*a22*n1

                 3             2
             + v1 *b21*b31 + v1 *v2*(4*a22*c13 + b21*b32)

                 2                               2
             + v1 *v3*( - b11*b21 + b21*b33) + v1 *(b21*n3 + b31*n2)

                    2                                                  2
             + v1*v2 *(4*a22*c23 - b21*b31) + v1*v2*v3*(4*a22*c33 + b21 )

             + v1*v2*(2*a22*m3 + b32*n2) + v1*v3*( - b11*n2 - b21*n1 + b33*n2)

                            3             2
             + v1*n2*n3 - v2 *b21*b32 + v2 *v3*( - 4*a22*c12 - b21*b33)

                 2                 2
             - v2 *b21*n3 - 4*v2*v3 *a22*c13 + v2*v3*( - 2*a22*m1 + b21*n2)

             - v3*n1*n2}





And again in machine readable form:



HAM= - u1**2*a22 + u1*v1*b11 + u1*n1 + u2**2*a22 + u2*v1*b21 + u2*n2 + u3**2*a33
 + u3*v1*b31 + u3*v2*b32 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1
 + v2**2*c22 + 2*v2*v3*c23 + v2*m2 + v3**2*c33 + v3*m3$

FI= - 1/2*u1**2*v2**2*a22 - 1/2*u1**2*v3**2*a22 + u1*u3*v1*v3*a22 + 1/2*u1*v1**3
*b11 - 1/2*u1*v1**2*v2*b21 + 1/2*u1*v1**2*n1 + 1/2*u1*v1*v2**2*b11 - 1/2*u1*v1*
v2*n2 + 1/2*u1*v1*v3**2*b11 + 1/2*u1*v2**2*n1 + 1/2*u1*v3**2*n1 + 1/2*u2**2*v1**
2*a22 + 1/2*u2**2*v3**2*a22 + 1/2*u2*v1**3*b21 + 1/2*u2*v1**2*n2 + 1/2*u2*v1*v3
**2*b21 + 1/2*u2*v3**2*n2 + 1/2*u3**2*v1**2*a33 + 1/2*u3**2*v2**2*a33 + u3**2*v3
**2*(1/2*a22 + 1/2*a33) + 1/2*u3*v1**3*b31 + 1/2*u3*v1**2*v2*b32 + 1/2*u3*v1**2*
v3*b33 + 1/2*u3*v1**2*n3 + 1/2*u3*v1*v2**2*b31 - 1/2*u3*v1*v2*v3*b21 + 1/2*u3*v1
*v3**2*b31 + 1/2*u3*v2**3*b32 + 1/2*u3*v2**2*v3*b33 + 1/2*u3*v2**2*n3 + 1/2*u3*
v2*v3**2*b32 - 1/2*u3*v2*v3*n2 + 1/2*u3*v3**3*b33 + 1/2*u3*v3**2*n3 + v1**3*v2*
c12 + v1**3*v3*c13 + 1/2*v1**3*m1 + 1/2*v1**2*v2**2*c22 + v1**2*v2*v3*c23 + 1/2*
v1**2*v2*m2 + 1/2*v1**2*v3**2*c33 + 1/2*v1**2*v3*m3 + v1*v2**3*c12 + v1*v2**2*v3
*c13 + 1/2*v1*v2**2*m1 + v1*v2*v3**2*c12 + v1*v3**3*c13 + 1/2*v1*v3**2*m1 + 1/2*
v2**4*c22 + v2**3*v3*c23 + 1/2*v2**3*m2 + v2**2*v3**2*(1/2*c22 + 1/2*c33) + 1/2*
v2**2*v3*m3 + v2*v3**3*c23 + 1/2*v2*v3**2*m2 + 1/2*v3**4*c33 + 1/2*v3**3*m3$