Solution 5 to problem over
Remaining equations |
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Equations
The following unsolved equations remain:
2 2
0=a12 + a13
Expressions
The solution is given through the following expressions:
r40=0
r41=0
r42=0
r43=0
r45=0
r46=0
r47=0
r48=0
1
---*c12*r4106
2
r49=---------------
a13
r410=0
1
---*c12*r4106
2
r411=---------------
a13
r412=0
r413=0
1 2
- ---*a12 *c12*r4106
4
r414=-----------------------
3
a13
r415=0
r416=0
r417=0
r418=0
r419=0
r420=0
r421=0
r422=0
r423=0
r424=0
r425=0
r426=0
r427=0
r428=0
r429=0
r430=0
r431=0
r432=0
r433=0
r434=0
r435=0
r436=0
r437=0
r439=0
r440=0
r441=0
r442=0
r443=0
r444=0
r445=0
r446=0
r447=0
r448=0
r449=0
r450=0
r451=0
r452=0
r453=0
r454=0
r455=0
r456=0
r458=0
r459=0
r460=0
r461=0
r462=0
r463=0
r464=0
r465=0
r466=0
r467=0
r468=0
r469=0
r470=0
r471=0
r472=0
r473=0
r474=0
r475=0
r476=0
r477=0
r478=0
r479=0
r480=0
r481=0
r483=0
r484=0
r485=0
r486=0
r487=0
r488=0
r489=0
r490=0
r491=0
r492=0
r493=0
2 2
a12 *r4106 + a13 *r4106
r494=-------------------------
a12*a13
r495=0
r496=0
r498=0
r499=0
r4100=0
r4101=0
r4102=0
r4103=0
r4104=0
1
- ---*a12*r4106
2
r4105=------------------
a13
1
- ---*a13*r4106
2
r4107=------------------
a12
r4108=0
r4109=0
1 2 1 2
---*a12 *r4106 + ---*a13 *r4106
2 2
r4110=---------------------------------
a12*a13
r4111=0
r4112=0
r4113=0
r4115=0
r4116=0
r4117=0
r4118=0
r4119=0
r4120=0
r4121=0
r4122=0
r4123=0
r4124=0
r4125=0
c33=c22
c23=0
a12*c12
c13=---------
a13
b33=0
b31=0
b21=0
b13=0
b11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r4106, c22, c12, a12, a13
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{r4106,a13,a12,c12}
Relevance for the application:
Modulo the following equation:
2 2
0=a12 + a13
the system of equations related to the Hamiltonian HAM:
2
HAM=(2*u1*u2*a12*a13 + 2*u1*u3*a13 + 2*v1*v2*a13*c12 + 2*v1*v3*a12*c12
2 2
+ v2 *a13*c22 + v3 *a13*c22)/a13
has apart from the Hamiltonian and Casimirs only the following first integral:
2 2 1 2 2 1 4 1 2 2 4 2 3
FI=u1 *v1 *(---*a12 *a13 + ---*a13 ) - ---*u1 *v2 *a13 + u1 *v2*v3*a12*a13
2 2 2
1 2 2 2 2 2 2 4 1 4 3
- ---*u1 *v3 *a12 *a13 + u1*u2*v1*v2*(a12 *a13 + a13 ) - ---*v1 *a12 *c12
2 4
1 2 2 2 1 2 2 2
+ ---*v1 *v2 *a12*a13 *c12 + ---*v1 *v3 *a12*a13 *c12
2 2
{HAM,FI} = too large to simplify
And again in machine readable form:
HAM=(2*u1*u2*a12*a13 + 2*u1*u3*a13**2 + 2*v1*v2*a13*c12 + 2*v1*v3*a12*c12 + v2**
2*a13*c22 + v3**2*a13*c22)/a13$
FI=u1**2*v1**2*(1/2*a12**2*a13**2 + 1/2*a13**4) - 1/2*u1**2*v2**2*a13**4 + u1**2
*v2*v3*a12*a13**3 - 1/2*u1**2*v3**2*a12**2*a13**2 + u1*u2*v1*v2*(a12**2*a13**2 +
a13**4) - 1/4*v1**4*a12**3*c12 + 1/2*v1**2*v2**2*a12*a13**2*c12 + 1/2*v1**2*v3
**2*a12*a13**2*c12$