Solution 8 to problem over
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Expressions
The solution is given through the following expressions:
i*n2*n3*r32
r10=-------------
2*a33*c13
2
i*n2 *r32
r11=-----------
2*a33*c13
2
- n2 *r32
r12=------------
2*a33*c13
r13=0
r14=0
r15=0
- m1*r32 - i*m2*r32
r20=----------------------
4*c13
r21=0
r22=0
r23=0
r24=0
i*n2*r32
r26=----------
2*c13
r27=0
r28=0
r210=0
n2*r32
r212=--------
2*c13
r213=0
r214=0
r215=0
- n2*r32
r216=-----------
2*c13
r217=0
r218=0
r219=0
r220=0
r30=0
r31=0
r33=0
r34=0
r35=0
r36=0
r37=r32
r38=0
r39=0
r310=0
r311=0
r312=0
r313=0
r314=0
r315=0
r316=0
r317=0
r318=0
r319=0
r320=0
r323=0
r325=0
r326=0
r328=0
r329=0
r330=0
r332=0
r333=0
r334=0
r335=0
r336=0
r337=0
r338=0
r339=0
r340=0
r341=0
r342=0
r343=0
r344=0
r345=0
r347=0
r348=0
r349=0
r350=0
r351=0
r352=0
r353=0
r354=0
r355=0
m3=0
n1=i*n2
c33=i*c12
c23= - i*c13
c22=2*i*c12
c11=0
b33=0
b32=0
b31=0
b23=0
b22=0
b21=0
b13=0
b12=0
b11=0
a23=0
a22=0
a13=0
a12=0
a11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r32, m1, m2, n3, n2, c12, c13, a33
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{n2,r32,c13,a33}
Relevance for the application:
The new Hamiltonian in form of a list of vanishing expressions:
{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
- 2*i*c12 + c22,
i*c13 + c23,
- i*c12 + c33,
n1 - i*n2,
m3}$
The system of equations related to the Hamiltonian HAM:
2
HAM=i*u1*n2 + u2*n2 + u3 *a33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1
2 2
+ 2*i*v2 *c12 - 2*i*v2*v3*c13 + v2*m2 + i*v3 *c12
has apart from the Hamiltonian and Casimirs only the following first integral:
2
FI= - 2*u1*v2*a33*n2 + 2*u2*v1*a33*n2 + 2*i*u3*v3*a33*n2 + 4*v1 *v3*a33*c13
2 2 2 2
- 2*v1*n2 + 4*v2 *v3*a33*c13 + 2*i*v2*n2 + v3 *( - a33*m1 - i*a33*m2)
+ 2*i*v3*n2*n3
= a product of the elements of: {4,
- u1*v2*a33*n2 u2*v1*a33*n2 i*u3*v3*a33*n2 2
----------------- + -------------- + ---------------- + v1 *v3*a33*c13
2 2 2
2 2
- v1*n2 2 i*v2*n2 2 - a33*m1 - i*a33*m2
+ ----------- + v2 *v3*a33*c13 + ---------- + v3 *----------------------
2 2 4
i*v3*n2*n3
+ ------------}
2
{HAM,FI} = 0
And again in machine readable form:
HAM=i*u1*n2 + u2*n2 + u3**2*a33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1*m1 + 2*
i*v2**2*c12 - 2*i*v2*v3*c13 + v2*m2 + i*v3**2*c12$
FI= - 2*u1*v2*a33*n2 + 2*u2*v1*a33*n2 + 2*i*u3*v3*a33*n2 + 4*v1**2*v3*a33*c13 -
2*v1*n2**2 + 4*v2**2*v3*a33*c13 + 2*i*v2*n2**2 + v3**2*( - a33*m1 - i*a33*m2) +
2*i*v3*n2*n3$