Solution 3 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


             3               2                      2                    3
r13=( - 2*a11 *n3*r29 + 2*a11 *a22*n3*r29 + 2*a11*n1 *n3*r4114 - 2*a11*n3 *r4114

              2                  3              4        3
      - a22*n1 *n3*r4114 + a22*n3 *r4114)/(2*a11  - 2*a11 *a22)


             3               2                      3                    2
r15=( - 2*a11 *n1*r29 + 2*a11 *a22*n1*r29 + 2*a11*n1 *r4114 - 2*a11*n1*n3 *r4114

              3                  2              4        3
      - a22*n1 *r4114 + a22*n1*n3 *r4114)/(2*a11  - 2*a11 *a22)


r20=0


r21=0


r22=0


r23=0


r24=0


r26=0


r27=0


r28=0


r210=0


r212=0


       - 2*a11*n2*n3*r4114 + a22*n2*n3*r4114
r213=----------------------------------------
                    3      2
                 a11  - a11 *a22


           4            3                2    2            2   2
r214=(2*a11 *r29 - 4*a11 *a22*r29 + 2*a11 *a22 *r29 - 2*a11 *n2 *r4114

              2   2                     2                   2
       + 2*a11 *n3 *r4114 + 2*a11*a22*n1 *r4114 + a11*a22*n2 *r4114

                     2            2   2            2   2              4
       - 3*a11*a22*n3 *r4114 - a22 *n1 *r4114 + a22 *n3 *r4114)/(2*a11

           3
    - 2*a11 *a22)


r215=0


r216=0


r217=0


       - 2*a11*n1*n3*r4114 + a22*n1*n3*r4114
r218=----------------------------------------
                    3      2
                 a11  - a11 *a22


       - 2*a11*n1*n2*r4114 + a22*n1*n2*r4114
r219=----------------------------------------
                    3      2
                 a11  - a11 *a22


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


r310=0


r311=0


r312=0


r313=0


r314=0


r315=0


       - n3*r452
r316=------------
         a11


r317=0


r318=0


      n3*r4114
r319=-----------
      a11 - a22


r320=0


r321=0


r322=0


r323=0


r324=0


r325=0


       - n2*r452
r326=------------
         a11


       - n3*r452
r327=------------
         a11


r328=0


      n2*r4114
r329=-----------
      a11 - a22


r330=0


       - n2*r452
r331=------------
         a11


r332=0


      a11*n3*r4114 - a22*n3*r4114
r333=-----------------------------
                    2
                 a11


      a11*n2*r4114 - a22*n2*r4114
r334=-----------------------------
                    2
                 a11


r335=0


r336=0


r337=0


r338=0


r339=0


r340=0


       - n1*r452
r341=------------
         a11


r342=0


       - n3*r452
r343=------------
         a11


      n1*r4114
r344=-----------
      a11 - a22


r345=0


       - n1*r452
r346=------------
         a11


       - n2*r452
r347=------------
         a11


r348=0


      a11*n1*r4114 - a22*n1*r4114
r349=-----------------------------
                    2
                 a11


r350=0


r351=0


       - n1*r452
r352=------------
         a11


       - n3*r4114
r353=-------------
          a11


       - n2*r4114
r354=-------------
          a11


       - n1*r4114
r355=-------------
          a11


r40=0


r41=0


r42=0


r43=0


r44=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r425=0


r426=0


       - r446
r427=---------
         2


r428=0


r429=0


       - r446
r430=---------
         2


r431=r452


r432=0


r433=0


       - a22*r4114
r434=---------------
      2*a11 - 2*a22


r435=0


r436=0


r437=0


r438=0


r439=0


r440=0


r441=0


r442=0


r444=0


r445=0


r447=0


r448=0


r449=0


r450=0


r451=0


r453=0


r454=0


       - r446
r455=---------
         2


r456=0


r458=0


r459=0


       - r446
r460=---------
         2


      a11*r452 - a22*r452
r461=---------------------
              a11


r462=0


r463=0


r464=0


r465=0


      a11*r452 - a22*r452
r466=---------------------
              a11


r467=0


r468=0


                         2
      a11*a22*r4114 - a22 *r4114
r469=----------------------------
                     2
                2*a11


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=r446


r484=0


r485=0


r486=0


r487=0


r488=r452


r489=0


r490=0


r491=0


r492=0


r493=0


r494=r446


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


       a11*r452 - a22*r452
r4102=---------------------
               a11


r4103=0


r4104=0


        - r446
r4105=---------
          2


r4106=0


        - r446
r4107=---------
          2


r4108=0


r4109=0


r4111=0


r4112=0


r4113=0


r4115=0


r4117=0


r4118=0


       a11*r4114 - a22*r4114
r4119=-----------------------
                a11


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


m3=0


m2=0


m1=0


c33=0


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33=0


a23=0


a13=0


a12=0


             3               2                      2
r14=( - 2*a11 *n2*r29 + 2*a11 *a22*n2*r29 + 2*a11*n1 *n2*r4114

                   2               2                     2              4
      - 2*a11*n2*n3 *r4114 - a22*n1 *n2*r4114 + a22*n2*n3 *r4114)/(2*a11

           3
    - 2*a11 *a22)


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r29, r446, r4114, r452, n3, n1, n2, a11, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a11 - a22,a22,a11}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a12,
a13,
a23,
a33,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
m1,
m2,
m3}$

The system of equations related to the Hamiltonian HAM:

      2                 2
HAM=u1 *a11 + u1*n1 + u2 *a22 + u2*n2 + u3*n3

has apart from the Hamiltonian and Casimirs the following 4 first integrals: 

        2              2
FI= - u1 *v1*n1 + u1*u2 *v1*(a11 - a22) - u1*u2*v1*n2 - u1*u2*v2*n1

           2                                        3
    + u1*u3 *v1*a11 - u1*u3*v1*n3 - u1*u3*v3*n1 + u2 *v2*(a11 - a22)

        2                       2              2
    + u2 *u3*v3*(a11 - a22) - u2 *v2*n2 + u2*u3 *v2*a11 - u2*u3*v2*n3

                      3            2
    - u2*u3*v3*n2 + u3 *v3*a11 - u3 *v3*n3

  = a product of the elements of: {u1*v1 + u2*v2 + u3*v3,

                2                         2
    - u1*n1 + u2 *(a11 - a22) - u2*n2 + u3 *a11 - u3*n3}

{HAM,FI} = 0



     3          3           2
FI=u1 *( - 2*a11 *n1 + 2*a11 *a22*n1)

        2   2       4        3            2    2
    + u1 *u2 *(2*a11  - 4*a11 *a22 + 2*a11 *a22 )

        2             3           2             2   2       4        3
    + u1 *u2*( - 2*a11 *n2 + 2*a11 *a22*n2) + u1 *u3 *(2*a11  - 2*a11 *a22)

        2             3           2
    + u1 *u3*( - 2*a11 *n3 + 2*a11 *a22*n3)

           2       3           2                   2
    + u1*u2 *(2*a11 *n1 - 4*a11 *a22*n1 + 2*a11*a22 *n1)

                     2                                   2    3
    + u1*u2*( - 4*a11 *n1*n2 + 2*a11*a22*n1*n2) + 2*u1*u3 *a11 *n1

                     2
    + u1*u3*( - 4*a11 *n1*n3 + 2*a11*a22*n1*n3)

                  3              2         3            2
    + u1*(2*a11*n1  - 2*a11*n1*n3  - a22*n1  + a22*n1*n3 )

        4     3            2    2          3
    + u2 *(a11 *a22 - 2*a11 *a22  + a11*a22 )

        3       3           2                   2
    + u2 *(2*a11 *n2 - 4*a11 *a22*n2 + 2*a11*a22 *n2)

        2          3           2                   2         2          2   2
    + u2 *u3*(2*a11 *n3 - 4*a11 *a22*n3 + 2*a11*a22 *n3) + u2 *( - 2*a11 *n2

              2   2               2             2               2      2   2
       + 2*a11 *n3  + 2*a11*a22*n1  + a11*a22*n2  - 3*a11*a22*n3  - a22 *n1

            2   2           2    3
       + a22 *n3 ) + 2*u2*u3 *a11 *n2

                     2
    + u2*u3*( - 4*a11 *n2*n3 + 2*a11*a22*n2*n3)

                  2                 2         2               2      4    3
    + u2*(2*a11*n1 *n2 - 2*a11*n2*n3  - a22*n1 *n2 + a22*n2*n3 ) - u3 *a11 *a22

          3    3                  2              3         2            3
    + 2*u3 *a11 *n3 + u3*(2*a11*n1 *n3 - 2*a11*n3  - a22*n1 *n3 + a22*n3 )

  = a product of the elements of: {2,

     3        3         2             2   2     4        3          2    2
   u1 *( - a11 *n1 + a11 *a22*n1) + u1 *u2 *(a11  - 2*a11 *a22 + a11 *a22 )

        2           3         2             2   2     4      3
    + u1 *u2*( - a11 *n2 + a11 *a22*n2) + u1 *u3 *(a11  - a11 *a22)

        2           3         2
    + u1 *u3*( - a11 *n3 + a11 *a22*n3)

           2     3           2                 2
    + u1*u2 *(a11 *n1 - 2*a11 *a22*n1 + a11*a22 *n1)

                     2                               2    3
    + u1*u2*( - 2*a11 *n1*n2 + a11*a22*n1*n2) + u1*u3 *a11 *n1

                     2
    + u1*u3*( - 2*a11 *n1*n3 + a11*a22*n1*n3)

                  3              2         3            2
          2*a11*n1  - 2*a11*n1*n3  - a22*n1  + a22*n1*n3
    + u1*-------------------------------------------------
                                 2

              3            2    2          3
        4  a11 *a22 - 2*a11 *a22  + a11*a22
    + u2 *-----------------------------------
                           2

        3     3           2                 2
    + u2 *(a11 *n2 - 2*a11 *a22*n2 + a11*a22 *n2)

        2        3           2                 2         2          2   2
    + u2 *u3*(a11 *n3 - 2*a11 *a22*n3 + a11*a22 *n3) + u2 *( - 2*a11 *n2

              2   2               2             2               2      2   2
       + 2*a11 *n3  + 2*a11*a22*n1  + a11*a22*n2  - 3*a11*a22*n3  - a22 *n1

            2   2           2    3                     2
       + a22 *n3 )/2 + u2*u3 *a11 *n2 + u2*u3*( - 2*a11 *n2*n3 + a11*a22*n2*n3)

                  2                 2         2               2
          2*a11*n1 *n2 - 2*a11*n2*n3  - a22*n1 *n2 + a22*n2*n3
    + u2*-------------------------------------------------------
                                    2

            4    3
        - u3 *a11 *a22      3    3
    + ----------------- + u3 *a11 *n3
              2

                  2              3         2            3
          2*a11*n1 *n3 - 2*a11*n3  - a22*n1 *n3 + a22*n3
    + u3*-------------------------------------------------}
                                 2

{HAM,FI} = 0



        2   2     2   2                                     2   2     2   2
FI= - u1 *v2  - u1 *v3  + 2*u1*u2*v1*v2 + 2*u1*u3*v1*v3 - u2 *v1  - u2 *v3

                        2   2     2   2
    + 2*u2*u3*v2*v3 - u3 *v1  - u3 *v2

which the program can not factorize further.

{HAM,FI} = 0



                2                         2
FI= - u1*n1 + u2 *(a11 - a22) - u2*n2 + u3 *a11 - u3*n3

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a11 + u1*n1 + u2**2*a22 + u2*n2 + u3*n3$

FI= - u1**2*v1*n1 + u1*u2**2*v1*(a11 - a22) - u1*u2*v1*n2 - u1*u2*v2*n1 + u1*u3
**2*v1*a11 - u1*u3*v1*n3 - u1*u3*v3*n1 + u2**3*v2*(a11 - a22) + u2**2*u3*v3*(a11
 - a22) - u2**2*v2*n2 + u2*u3**2*v2*a11 - u2*u3*v2*n3 - u2*u3*v3*n2 + u3**3*v3*
a11 - u3**2*v3*n3$

FI=u1**3*( - 2*a11**3*n1 + 2*a11**2*a22*n1) + u1**2*u2**2*(2*a11**4 - 4*a11**3*
a22 + 2*a11**2*a22**2) + u1**2*u2*( - 2*a11**3*n2 + 2*a11**2*a22*n2) + u1**2*u3
**2*(2*a11**4 - 2*a11**3*a22) + u1**2*u3*( - 2*a11**3*n3 + 2*a11**2*a22*n3) + u1
*u2**2*(2*a11**3*n1 - 4*a11**2*a22*n1 + 2*a11*a22**2*n1) + u1*u2*( - 4*a11**2*n1
*n2 + 2*a11*a22*n1*n2) + 2*u1*u3**2*a11**3*n1 + u1*u3*( - 4*a11**2*n1*n3 + 2*a11
*a22*n1*n3) + u1*(2*a11*n1**3 - 2*a11*n1*n3**2 - a22*n1**3 + a22*n1*n3**2) + u2
**4*(a11**3*a22 - 2*a11**2*a22**2 + a11*a22**3) + u2**3*(2*a11**3*n2 - 4*a11**2*
a22*n2 + 2*a11*a22**2*n2) + u2**2*u3*(2*a11**3*n3 - 4*a11**2*a22*n3 + 2*a11*a22
**2*n3) + u2**2*( - 2*a11**2*n2**2 + 2*a11**2*n3**2 + 2*a11*a22*n1**2 + a11*a22*
n2**2 - 3*a11*a22*n3**2 - a22**2*n1**2 + a22**2*n3**2) + 2*u2*u3**2*a11**3*n2 + 
u2*u3*( - 4*a11**2*n2*n3 + 2*a11*a22*n2*n3) + u2*(2*a11*n1**2*n2 - 2*a11*n2*n3**
2 - a22*n1**2*n2 + a22*n2*n3**2) - u3**4*a11**3*a22 + 2*u3**3*a11**3*n3 + u3*(2*
a11*n1**2*n3 - 2*a11*n3**3 - a22*n1**2*n3 + a22*n3**3)$

FI= - u1**2*v2**2 - u1**2*v3**2 + 2*u1*u2*v1*v2 + 2*u1*u3*v1*v3 - u2**2*v1**2 - 
u2**2*v3**2 + 2*u2*u3*v2*v3 - u3**2*v1**2 - u3**2*v2**2$

FI= - u1*n1 + u2**2*(a11 - a22) - u2*n2 + u3**2*a11 - u3*n3$