Solution 3 to problem over
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Expressions
The solution is given through the following expressions:
2 2 2 2 2
r10=(2*a33 *n1 *n3*r26 + 2*a33 *n2 *n3*r26 - 4*m2*n1 *n2*n3*r464
2 3 3
+ 4*i*m2*n1*n2 *n3*r464 - 4*i*m2*n1*n3 *r464 - 4*m2*n2*n3 *r464
3 2 2 2 3 3
- i*n1 *n2*n3*r461 - n1 *n2 *n3*r461 + 2*n1 *n3 *r461 - i*n1*n2 *n3*r461
4 2 3 3 2 3 2
- n2 *n3*r461 + 2*n2 *n3 *r461)/(2*a33 *n1 + 2*a33 *n2 )
2 3 2 2 2 2 2 3
r11=(2*i*a33 *n1 *r26 + 2*a33 *n1 *n2*r26 + 2*i*a33 *n1*n2 *r26 + 2*a33 *n2 *r26
3 2 2 2 2
- 4*i*m2*n1 *n2*r464 - 8*m2*n1 *n2 *r464 + 8*m2*n1 *n3 *r464
3 2 4
+ 4*i*m2*n1*n2 *r464 - 8*i*m2*n1*n2*n3 *r464 + n1 *n2*r461
3 2 3 2 2 2 4
- 2*i*n1 *n2 *r461 + 3*i*n1 *n3 *r461 + n1 *n2*n3 *r461 - 2*i*n1*n2 *r461
2 2 5 3 2 3 2 3 2
+ 3*i*n1*n2 *n3 *r461 - n2 *r461 + n2 *n3 *r461)/(4*a33 *n1 + 4*a33 *n2 )
2 3 2 2 2 2 2 3
r12=(2*a33 *n1 *r26 - 2*i*a33 *n1 *n2*r26 + 2*a33 *n1*n2 *r26 - 2*i*a33 *n2 *r26
3 2 2 3
- 4*m2*n1 *n2*r464 + 8*i*m2*n1 *n2 *r464 + 4*m2*n1*n2 *r464
2 2 2 4
- 8*m2*n1*n2*n3 *r464 + 8*i*m2*n2 *n3 *r464 - i*n1 *n2*r461
3 2 3 2 2 2 4
- 2*n1 *n2 *r461 + n1 *n3 *r461 - 3*i*n1 *n2*n3 *r461 - 2*n1*n2 *r461
2 2 5 3 2 3 2
+ n1*n2 *n3 *r461 + i*n2 *r461 - 3*i*n2 *n3 *r461)/(4*a33 *n1
3 2
+ 4*a33 *n2 )
2 2
r13=(2*i*a33 *n1*n3*r26 - 2*a33 *n2*n3*r26 - 4*i*m2*n1*n2*n3*r464
3 2 3 3
+ 8*m2*n3 *r464 + n1 *n2*n3*r461 + 3*i*n1*n3 *r461 + n2 *n3*r461
3 3
- 3*n2*n3 *r461)/(4*a33 *m2)
2 2 2 2 2
r14=(2*i*a33 *n1*n2*r26 - 2*a33 *n2 *r26 - 4*i*m2*n1*n2 *r464 + 8*m2*n2*n3 *r464
2 2 2 4 2 2 3
+ n1 *n2 *r461 + 3*i*n1*n2*n3 *r461 + n2 *r461 - 3*n2 *n3 *r461)/(4*a33
*m2)
2 2 2 2 2
r15=(2*i*a33 *n1 *r26 - 2*a33 *n1*n2*r26 - 4*i*m2*n1 *n2*r464 + 8*m2*n1*n3 *r464
3 2 2 3 2 3
+ n1 *n2*r461 + 3*i*n1 *n3 *r461 + n1*n2 *r461 - 3*n1*n2*n3 *r461)/(4*a33
*m2)
2 2 2 2 2 3
r20=(4*m2 *n1 *r464 - 8*i*m2 *n1*n2*r464 - 4*m2 *n2 *r464 - i*m2*n1 *r461
2 2 2 3
- 3*m2*n1 *n2*r461 + 3*i*m2*n1*n2 *r461 + 4*i*m2*n1*n3 *r461 + m2*n2 *r461
2 2 2 2 2
+ 4*m2*n2*n3 *r461)/(4*a33 *n1 + 4*a33 *n2 )
2 2 2
r21=(2*i*m2 *n1*n3*r464 + 2*m2 *n2*n3*r464 - m2*n1 *n3*r461
2 2 2 2 2
+ 2*i*m2*n1*n2*n3*r461 + m2*n2 *n3*r461)/(a33 *n1 + a33 *n2 )
3 2 2 3
- i*m2*n1 *r461 - 3*m2*n1 *n2*r461 + 3*i*m2*n1*n2 *r461 + m2*n2 *r461
r22=------------------------------------------------------------------------
2 2 2 2
2*a33 *n1 + 2*a33 *n2
2 2 2
r23=( - 2*m2 *n1*n3*r464 + 2*i*m2 *n2*n3*r464 + i*m2*n1 *n3*r461
2 2 2 2 2
+ 2*m2*n1*n2*n3*r461 - i*m2*n2 *n3*r461)/(a33 *n1 + a33 *n2 )
3 2 2 3
- m2*n1 *r461 + 3*i*m2*n1 *n2*r461 + 3*m2*n1*n2 *r461 - i*m2*n2 *r461
r24=------------------------------------------------------------------------
2 2 2 2
2*a33 *n1 + 2*a33 *n2
2 3 2
r27=( - 4*m2*n1 *n3*r464 + 4*i*m2*n1*n2*n3*r464 - i*n1 *n3*r461 - n1 *n2*n3*r461
2 3 2 2 2 2
- i*n1*n2 *n3*r461 - n2 *n3*r461)/(2*a33 *n1 + 2*a33 *n2 )
2 3 2
r28=(4*m2*n1*n2*n3*r464 - 4*i*m2*n2 *n3*r464 - n1 *n3*r461 + i*n1 *n2*n3*r461
2 3 2 2 2 2
- n1*n2 *n3*r461 + i*n2 *n3*r461)/(2*a33 *n1 + 2*a33 *n2 )
2 2 3
2*i*m2*n1*n2*n3*r464 + 2*m2*n2 *n3*r464 - n1 *n2*n3*r461 - n2 *n3*r461
r210=------------------------------------------------------------------------
2 2 2 2
a33 *n1 + a33 *n2
2 2 2 2 2 2
r212=(i*a33 *n1 *r26 + i*a33 *n2 *r26 - 2*i*m2*n1 *n2*r464 + 2*m2*n1*n3 *r464
3 2 2 2 2 2
- 2*i*m2*n2 *r464 - 2*i*m2*n2*n3 *r464 + i*n1 *n3 *r461 + i*n2 *n3 *r461)
2 2 2 2
/(a33 *n1 + a33 *n2 )
2
- 4*m2*n2*n3*r464 - i*n1*n2*n3*r461 + n2 *n3*r461
r213=----------------------------------------------------
2
2*a33 *m2
2 2 2
r214=( - 2*i*a33 *n1*r26 + 2*a33 *n2*r26 + 4*i*m2*n1*n2*r464 - 4*m2*n2 *r464
2 2 2 2
- 4*m2*n3 *r464 - n1 *n2*r461 - i*n1*n2 *r461 - 2*i*n1*n3 *r461
2 2
+ 2*n2*n3 *r461)/(4*a33 *m2)
2 3 2
2*i*m2*n1 *n3*r464 + 2*m2*n1*n2*n3*r464 - n1 *n3*r461 - n1*n2 *n3*r461
r215=------------------------------------------------------------------------
2 2 2 2
a33 *n1 + a33 *n2
2 2 2 2 3
r216=( - 2*i*a33 *n1 *r26 - 2*i*a33 *n2 *r26 - 4*m2*n1 *r464
2 2 2
+ 8*i*m2*n1 *n2*r464 + 4*m2*n1*n2 *r464 - 4*m2*n1*n3 *r464
2 4 3 2 2
+ 4*i*m2*n2*n3 *r464 - i*n1 *r461 - 2*n1 *n2*r461 - 2*i*n1 *n3 *r461
3 4 2 2 2 2 2 2
- 2*n1*n2 *r461 + i*n2 *r461 - 2*i*n2 *n3 *r461)/(2*a33 *n1 + 2*a33 *n2
)
2 2 4 3
r217=(8*m2*n1 *n2*r464 - 8*i*m2*n1*n2 *r464 - n1 *r461 + 2*i*n1 *n2*r461
3 4 2 2 2 2
+ 2*i*n1*n2 *r461 + n2 *r461)/(2*a33 *n1 + 2*a33 *n2 )
2
- 4*m2*n1*n3*r464 - i*n1 *n3*r461 + n1*n2*n3*r461
r218=----------------------------------------------------
2
2*a33 *m2
2 2
- 4*m2*n1*n2*r464 - i*n1 *n2*r461 + n1*n2 *r461
r219=--------------------------------------------------
2
2*a33 *m2
2 2 2
r220=( - 2*i*a33 *n1*r26 + 2*a33 *n2*r26 - 4*m2*n1 *r464 + 4*i*m2*n1*n2*r464
2 3 2 3 2
- 4*m2*n3 *r464 - i*n1 *r461 - 2*i*n1*n3 *r461 - n2 *r461 + 2*n2*n3 *r461
2
)/(4*a33 *m2)
2 2 2 2 2
r30=( - 2*m2 *n1 *n3*r461 + 4*i*m2 *n1*n2*n3*r461 + 2*m2 *n2 *n3*r461
3 2 2
+ i*m2*n1 *n3*r483 + m2*n1 *n2*n3*r483 + i*m2*n1*n2 *n3*r483
3 4 2 2 4
+ m2*n2 *n3*r483)/(a33*n1 + 2*a33*n1 *n2 + a33*n2 )
2 3 2 2 2 2
r31=( - 2*i*m2 *n1 *r461 - 6*m2 *n1 *n2*r461 + 6*i*m2 *n1*n2 *r461
2 3 4 3 3
+ 2*m2 *n2 *r461 - m2*n1 *r483 + 2*i*m2*n1 *n2*r483 + 2*i*m2*n1*n2 *r483
4 4 2 2 4
+ m2*n2 *r483)/(2*a33*n1 + 4*a33*n1 *n2 + 2*a33*n2 )
2 2 2 2 2
r32=( - 2*m2 *n1 *n3*r461 + 4*i*m2 *n1*n2*n3*r461 + 2*m2 *n2 *n3*r461
3 2 2
+ i*m2*n1 *n3*r483 + m2*n1 *n2*n3*r483 + i*m2*n1*n2 *n3*r483
3 4 2 2 4
+ m2*n2 *n3*r483)/(a33*n1 + 2*a33*n1 *n2 + a33*n2 )
2 3 2 2 2 2
r33=( - 2*i*m2 *n1 *r461 - 6*m2 *n1 *n2*r461 + 6*i*m2 *n1*n2 *r461
2 3 4 3 3
+ 2*m2 *n2 *r461 - m2*n1 *r483 + 2*i*m2*n1 *n2*r483 + 2*i*m2*n1*n2 *r483
4 4 2 2 4
+ m2*n2 *r483)/(2*a33*n1 + 4*a33*n1 *n2 + 2*a33*n2 )
2 5 2 4 2 3 2
r34=( - 2*m2 *n1 *r461 + 6*i*m2 *n1 *n2*r461 + 4*m2 *n1 *n2 *r461
2 2 3 2 4 2 5
+ 4*i*m2 *n1 *n2 *r461 + 6*m2 *n1*n2 *r461 - 2*i*m2 *n2 *r461
6 5 4 2 3 3
+ i*m2*n1 *r483 + 2*m2*n1 *n2*r483 + i*m2*n1 *n2 *r483 + 4*m2*n1 *n2 *r483
2 4 5 6 6
- i*m2*n1 *n2 *r483 + 2*m2*n1*n2 *r483 - i*m2*n2 *r483)/(2*a33*n1
4 2 2 4 6
+ 6*a33*n1 *n2 + 6*a33*n1 *n2 + 2*a33*n2 )
r35=0
2 3 2 2 2 2
r36=( - 2*m2 *n1 *r461 + 6*i*m2 *n1 *n2*r461 + 6*m2 *n1*n2 *r461
2 3 4 3 3
- 2*i*m2 *n2 *r461 + i*m2*n1 *r483 + 2*m2*n1 *n2*r483 + 2*m2*n1*n2 *r483
4 4 2 2 4
- i*m2*n2 *r483)/(2*a33*n1 + 4*a33*n1 *n2 + 2*a33*n2 )
2 2 2 2 2
r37=( - 2*m2 *n1 *n3*r461 + 4*i*m2 *n1*n2*n3*r461 + 2*m2 *n2 *n3*r461
3 2 2
+ i*m2*n1 *n3*r483 + m2*n1 *n2*n3*r483 + i*m2*n1*n2 *n3*r483
3 4 2 2 4
+ m2*n2 *n3*r483)/(a33*n1 + 2*a33*n1 *n2 + a33*n2 )
2 3 2 2 2 2
r38=( - 2*i*m2 *n1 *r461 - 6*m2 *n1 *n2*r461 + 6*i*m2 *n1*n2 *r461
2 3 4 3 3
+ 2*m2 *n2 *r461 - m2*n1 *r483 + 2*i*m2*n1 *n2*r483 + 2*i*m2*n1*n2 *r483
4 4 2 2 4
+ m2*n2 *r483)/(2*a33*n1 + 4*a33*n1 *n2 + 2*a33*n2 )
2 3 2 2 2 2
r39=( - 2*m2 *n1 *r461 + 6*i*m2 *n1 *n2*r461 + 6*m2 *n1*n2 *r461
2 3 4 3 3
- 2*i*m2 *n2 *r461 + i*m2*n1 *r483 + 2*m2*n1 *n2*r483 + 2*m2*n1*n2 *r483
4 4 2 2 4
- i*m2*n2 *r483)/(2*a33*n1 + 4*a33*n1 *n2 + 2*a33*n2 )
2 2
2*i*m2*n1*n3*r461 + 2*m2*n2*n3*r461 - n1 *n3*r483 - n2 *n3*r483
r310=-----------------------------------------------------------------
2 2
2*a33*n1 + 2*a33*n2
2 2 2
r311=(4*i*m2 *n1*r464 + 4*m2 *n2*r464 - 2*m2*n1 *r461 + 6*i*m2*n1*n2*r461
2 2 3 2 2
+ 4*m2*n2 *r461 + n1 *n2*r483 + n2 *r483)/(2*a33*n1 + 2*a33*n2 )
2 2
- 2*i*m2*n1*n3*r461 - 2*m2*n2*n3*r461 - n1 *n3*r483 - n2 *n3*r483
r312=--------------------------------------------------------------------
2 2
2*a33*n1 + 2*a33*n2
2 2
2*i*m2*n1 *r461 + 4*m2*n1*n2*r461 - 2*i*m2*n2 *r461
r313=-----------------------------------------------------
2 2
a33*n1 + a33*n2
r314=0
2 2
- 2*i*m2*n1*n3*r461 - 2*m2*n2*n3*r461 - n1 *n3*r483 - n2 *n3*r483
r315=--------------------------------------------------------------------
2 2
2*a33*n1 + 2*a33*n2
2 2
4*i*m2*n1*n3*r464 + 4*m2*n2*n3*r464 - n1 *n3*r461 - n2 *n3*r461
r316=-----------------------------------------------------------------
2 2
a33*n1 + a33*n2
2 2
- m2*n1 *r464 + 2*i*m2*n1*n2*r464 + m2*n2 *r464
r317=--------------------------------------------------
2 2
a33*n1 + a33*n2
2 2
i*m2*n1 *r464 + 2*m2*n1*n2*r464 - i*m2*n2 *r464
r318=-------------------------------------------------
2 2
a33*n1 + a33*n2
- n3*r464
r319=------------
a33
2 2 3
- 2*i*m2*n1*n2*r461 - 2*m2*n2 *r461 - n1 *n2*r483 - n2 *r483
r320=---------------------------------------------------------------
2 2
2*a33*n1 + 2*a33*n2
- 2*m2*n1*n3*r461 + 2*i*m2*n2*n3*r461
r323=----------------------------------------
2 2
a33*n1 + a33*n2
2 2 2
r325=( - 4*i*m2 *n1*r464 - 4*m2 *n2*r464 - 2*m2*n1 *r461 + 2*i*m2*n1*n2*r461
2 3 2 2
- n1 *n2*r483 - n2 *r483)/(2*a33*n1 + 2*a33*n2 )
2 2 3
r326=( - 2*m2*n1 *r464 + 4*i*m2*n1*n2*r464 + 2*m2*n2 *r464 - i*n1 *r461
2 2 3 2 2
- 3*n1 *n2*r461 - i*n1*n2 *r461 - 3*n2 *r461)/(2*a33*n1 + 2*a33*n2 )
2 2
- 2*m2*n1*n3*r464 + 2*i*m2*n2*n3*r464 - i*n1 *n3*r461 - i*n2 *n3*r461
r328=------------------------------------------------------------------------
2 2
a33*n1 + a33*n2
- n2*r464
r329=------------
a33
n3*r461
r330=---------
a33
2 2 3
r332=(2*i*m2*n1 *r464 - 4*m2*n1*n2*r464 + 6*i*m2*n2 *r464 + n1 *r461
2 2 3 2 2
- 3*i*n1 *n2*r461 + n1*n2 *r461 - 3*i*n2 *r461)/(2*a33*n1 + 2*a33*n2 )
2*m2*n3*r464 + i*n1*n3*r461 - n2*n3*r461
r333=------------------------------------------
2*a33*m2
2
2*m2*n2*r464 + i*n1*n2*r461 - n2 *r461
r334=----------------------------------------
2*a33*m2
2 3 2
- 2*i*m2*n1 *r461 - 2*m2*n1*n2*r461 - n1 *r483 - n1*n2 *r483
r335=---------------------------------------------------------------
2 2
2*a33*n1 + 2*a33*n2
2*m2*n1*n3*r461 - 2*i*m2*n2*n3*r461
r336=-------------------------------------
2 2
a33*n1 + a33*n2
2 2 2
r337=(4*m2 *n1*r464 - 4*i*m2 *n2*r464 + 2*m2*n1*n2*r461 - 2*i*m2*n2 *r461
3 2 2 2
- n1 *r483 - n1*n2 *r483)/(2*a33*n1 + 2*a33*n2 )
r338=0
2 2 2
r339=(4*i*m2 *n1*r464 + 4*m2 *n2*r464 + 2*m2*n1 *r461 - 2*i*m2*n1*n2*r461
2 3 2 2
+ n1 *n2*r483 + n2 *r483)/(2*a33*n1 + 2*a33*n2 )
2 2 2
r340=(4*m2 *n1*r464 - 4*i*m2 *n2*r464 + 2*m2*n1*n2*r461 - 2*i*m2*n2 *r461
3 2 2 2
- n1 *r483 - n1*n2 *r483)/(2*a33*n1 + 2*a33*n2 )
2*i*m2*r464 - n1*r461 - i*n2*r461
r341=-----------------------------------
a33
2 2
2*m2*n1*n3*r464 - 2*i*m2*n2*n3*r464 + i*n1 *n3*r461 + i*n2 *n3*r461
r342=---------------------------------------------------------------------
2 2
a33*n1 + a33*n2
r343=0
- n1*r464
r344=------------
a33
r345=0
2 2 3
r347=( - 6*m2*n1 *r464 + 4*i*m2*n1*n2*r464 - 2*m2*n2 *r464 - 3*i*n1 *r461
2 2 3 2 2
- n1 *n2*r461 - 3*i*n1*n2 *r461 - n2 *r461)/(2*a33*n1 + 2*a33*n2 )
r348=0
2
2*m2*n1*r464 + i*n1 *r461 - n1*n2*r461
r349=----------------------------------------
2*a33*m2
n3*r461
r350=---------
a33
2 2 3
r351=(6*m2*n1 *r464 - 4*i*m2*n1*n2*r464 + 2*m2*n2 *r464 + 3*i*n1 *r461
2 2 3 2 2
+ n1 *n2*r461 + 3*i*n1*n2 *r461 + n2 *r461)/(2*a33*n1 + 2*a33*n2 )
2 2 3
r352=(2*i*m2*n1 *r464 - 4*m2*n1*n2*r464 + 6*i*m2*n2 *r464 + n1 *r461
2 2 3 2 2
- 3*i*n1 *n2*r461 + n1*n2 *r461 - 3*i*n2 *r461)/(2*a33*n1 + 2*a33*n2 )
2*m2*n3*r464 + i*n1*n3*r461 - n2*n3*r461
r353=------------------------------------------
2*a33*m2
2
2*m2*n2*r464 + i*n1*n2*r461 - n2 *r461
r354=----------------------------------------
2*a33*m2
2
2*m2*n1*r464 + i*n1 *r461 - n1*n2*r461
r355=----------------------------------------
2*a33*m2
r40=0
r41=0
r42=0
r43=0
r44=0
r45=0
r46=0
r47=0
r48=0
r49=0
r410=0
r411=0
r412=0
r413=0
2 2 2 2 2 3
r415=( - 2*m2 *n1 *r461 + 4*i*m2 *n1*n2*r461 + 2*m2 *n2 *r461 + i*m2*n1 *r483
2 2 3 4 2 2 4
+ m2*n1 *n2*r483 + i*m2*n1*n2 *r483 + m2*n2 *r483)/(n1 + 2*n1 *n2 + n2
)
r416=0
2 2 2 2 2 3
r417=( - 2*m2 *n1 *r461 + 4*i*m2 *n1*n2*r461 + 2*m2 *n2 *r461 + i*m2*n1 *r483
2 2 3 4 2 2 4
+ m2*n1 *n2*r483 + i*m2*n1*n2 *r483 + m2*n2 *r483)/(n1 + 2*n1 *n2 + n2
)
r418=0
r419=0
2 2 2 2 2 3
r420=(2*i*m2 *n1 *r461 + 4*m2 *n1*n2*r461 - 2*i*m2 *n2 *r461 + m2*n1 *r483
2 2 3 4 2 2
- i*m2*n1 *n2*r483 + m2*n1*n2 *r483 - i*m2*n2 *r483)/(n1 + 2*n1 *n2
4
+ n2 )
r421=0
2 2 2 2 2 3
r422=( - 2*m2 *n1 *r461 + 4*i*m2 *n1*n2*r461 + 2*m2 *n2 *r461 + i*m2*n1 *r483
2 2 3 4 2 2 4
+ m2*n1 *n2*r483 + i*m2*n1*n2 *r483 + m2*n2 *r483)/(n1 + 2*n1 *n2 + n2
)
r423=0
r424=0
2 2
4*i*m2*n1*r461 + 4*m2*n2*r461 + n1 *r483 + n2 *r483
r425=-----------------------------------------------------
2 2
2*n1 + 2*n2
r426=0
r427=0
r428=0
r429=0
2*i*m2*n1*r464 + 2*m2*n2*r464
r431=-------------------------------
2 2
n1 + n2
r432=0
r433=0
r435=0
2 2 2 2 2 3
r439=( - 2*i*m2 *n1 *r461 - 4*m2 *n1*n2*r461 + 2*i*m2 *n2 *r461 - m2*n1 *r483
2 2 3 4 2 2
+ i*m2*n1 *n2*r483 - m2*n1*n2 *r483 + i*m2*n2 *r483)/(n1 + 2*n1 *n2
4
+ n2 )
r442=0
2 2 2 2 2 3
r444=( - 2*i*m2 *n1 *r461 - 4*m2 *n1*n2*r461 + 2*i*m2 *n2 *r461 - m2*n1 *r483
2 2 3 4 2 2
+ i*m2*n1 *n2*r483 - m2*n1*n2 *r483 + i*m2*n2 *r483)/(n1 + 2*n1 *n2
4
+ n2 )
r445=0
- 2*m2*n1*r461 + 2*i*m2*n2*r461
r448=----------------------------------
2 2
n1 + n2
r450=0
r451=0
- 2*m2*n1*r464 + 2*i*m2*n2*r464
r453=----------------------------------
2 2
n1 + n2
r454=0
2 2
2*i*m2*n1*r461 + 2*m2*n2*r461 + n1 *r483 + n2 *r483
r455=-----------------------------------------------------
2 2
2*n1 + 2*n2
r458=0
r483
r460=------
2
r463=0
r465=0
r467=i*r461
r468=0
- i*n1*r461 + n2*r461
r469=------------------------
4*m2
r470=0
2 2 2 2 2 3
r471=(2*i*m2 *n1 *r461 + 4*m2 *n1*n2*r461 - 2*i*m2 *n2 *r461 + m2*n1 *r483
2 2 3 4 2 2
- i*m2*n1 *n2*r483 + m2*n1*n2 *r483 - i*m2*n2 *r483)/(n1 + 2*n1 *n2
4
+ n2 )
r472=0
2 2 2 2 2 3
r473=(2*i*m2 *n1 *r461 + 4*m2 *n1*n2*r461 - 2*i*m2 *n2 *r461 + m2*n1 *r483
2 2 3 4 2 2
- i*m2*n1 *n2*r483 + m2*n1*n2 *r483 - i*m2*n2 *r483)/(n1 + 2*n1 *n2
4
+ n2 )
r474=0
r475=0
r476=0
r477=0
2 2 2 2 2 3
r478=(4*i*m2 *n1 *r461 + 8*m2 *n1*n2*r461 - 4*i*m2 *n2 *r461 + 2*m2*n1 *r483
2 2 3 4
- 2*i*m2*n1 *n2*r483 + 2*m2*n1*n2 *r483 - 2*i*m2*n2 *r483)/(n1
2 2 4
+ 2*n1 *n2 + n2 )
r479=0
r480=0
2*m2*n1*r461 - 2*i*m2*n2*r461
r481=-------------------------------
2 2
n1 + n2
r482=0
r484=0
r485=0
r486=0
2*m2*n1*r464 - 2*i*m2*n2*r464
r487=-------------------------------
2 2
n1 + n2
r488=0
r489=0
r490=0
r493=0
r495=0
r496=i*r461
r498=0
r499=0
r4100=0
r4102=0
r4103=0
r4104=0
2 2
2*i*m2*n1*r461 + 2*m2*n2*r461 + n1 *r483 + n2 *r483
r4105=-----------------------------------------------------
2 2
2*n1 + 2*n2
r4106=0
r483
r4107=------
2
r4108=0
r4109=0
r4110=r483
r4111=r461
r4112=0
r4113=0
r4114=r464
r4115=0
r4117=2*i*r461
r4118=0
- i*n1*r461 + n2*r461
r4119=------------------------
2*m2
r4120=0
r4121= - i*r461
r4122=0
r4123=0
r4124=0
- i*n1*r461 + n2*r461
r4125=------------------------
4*m2
m3=0
m1=i*m2
c33=0
c23=0
c22=0
c13=0
c12=0
c11=0
b33=0
b32=0
b31=0
b23=0
b22=0
b21=0
b13=0
b12=0
b11=0
a23=0
a22=0
a13=0
a12=0
a11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r26, r483, r461, r464, n3, m2, n1, n2, a33
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{n1,n2,a33,r464,n1 + i*n2,n1 - i*n2,m2}
Relevance for the application:
The new Hamiltonian in form of a list of vanishing expressions:
{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
m1 - i*m2,
m3}$
The system of equations related to the Hamiltonian HAM:
2
HAM=u1*n1 + u2*n2 + u3 *a33 + u3*n3 + i*v1*m2 + v2*m2
has apart from the Hamiltonian and Casimirs the following 4 first integrals:
3 2 2 2 2 2 2 2
FI=u1 *(a33 *n1 + i*a33 *n1*n2) + u1 *u2*(a33 *n1*n2 + i*a33 *n2 )
2 2 3 3 2 2 2
+ u1 *u3 *(a33 *n1 + i*a33 *n2) + u1 *u3*(a33 *n1*n3 + i*a33 *n2*n3)
2 2 2
+ u1 *v1*(i*a33 *m2*n1 - 3*a33 *m2*n2)
2 2 2
+ u1 *v2*(3*a33 *m2*n1 + i*a33 *m2*n2)
2 3 2 2 2
+ u1 *( - a33*n1 - a33*n1*n2 - a33*n1*n3 - i*a33*n2*n3 )
2 2 2 2
+ u1*u2 *(a33 *n1 + i*a33 *n1*n2)
2 2
+ u1*u2*v1*( - 3*a33 *m2*n1 - i*a33 *m2*n2)
2 2 2 3
+ u1*u2*( - 2*a33*n1 *n2 - 2*i*a33*n1*n2 ) + 2*u1*u3 *v2*a33 *m2
2 2 2 2 2
+ u1*u3 *( - a33 *n1 - i*a33 *n1*n2) + 2*u1*u3*v2*a33 *m2*n3
2 2
+ u1*u3*v3*(2*i*a33 *m2*n1 - 2*a33 *m2*n2)
2 2 2 2
+ u1*u3*( - 2*a33*n1 *n3 - 2*i*a33*n1*n2*n3) + 2*u1*v1 *a33 *m2
2 2 2 2 2
+ 2*i*u1*v1*v2*a33 *m2 + 4*u1*v1*a33*m2*n1*n2 + 2*u1*v2 *a33 *m2
2 2
+ u1*v2*( - 2*a33*m2*n1 + 2*i*a33*m2*n1*n2 - 2*a33*m2*n3 )
+ 2*i*u1*v3*a33*m2*n1*n3
3 2 2 2 2 2
+ u1*( - i*n1 *n2 + n1 *n2 + 2*n1 *n3 + 2*i*n1*n2*n3 )
3 2 2 2 2 2 3 3
+ u2 *(a33 *n1*n2 + i*a33 *n2 ) + u2 *u3 *(a33 *n1 + i*a33 *n2)
2 2 2 2 2 2
+ u2 *u3*(a33 *n1*n3 + i*a33 *n2*n3) + u2 *v1*(i*a33 *m2*n1 - 3*a33 *m2*n2)
2 2 2 2 3 2
+ u2 *(i*a33*n1 *n2 - 2*a33*n1*n2 - a33*n1*n3 - i*a33*n2 - i*a33*n2*n3 )
2 3 2 2 2 2
- 2*u2*u3 *v1*a33 *m2 + u2*u3 *( - a33 *n1*n2 - i*a33 *n2 )
2 2 2
- 2*u2*u3*v1*a33 *m2*n3 + u2*u3*v3*( - a33 *m2*n1 + i*a33 *m2*n2)
2 2 2 2
+ u2*u3*( - 2*a33*n1*n2*n3 - 2*i*a33*n2 *n3) - 2*i*u2*v1 *a33 *m2
2 2
+ u2*v1*( - 2*i*a33*m2*n1*n2 + 2*a33*m2*n2 + 2*a33*m2*n3 )
+ 2*i*u2*v3*a33*m2*n2*n3
2 2 3 2 2 2
+ u2*( - i*n1 *n2 + n1*n2 + 2*n1*n2*n3 + 2*i*n2 *n3 )
3 3 3 2 2
+ 2*i*u3 *v3*a33 *m2 + u3 *( - a33 *n1*n3 - i*a33 *n2*n3)
2 2 2 2 2 2
+ u3 *v1*(i*a33 *m2*n1 + a33 *m2*n2) + u3 *v2*( - a33 *m2*n1 + i*a33 *m2*n2)
2 2 2 2
+ 4*i*u3 *v3*a33 *m2*n3 + 2*u3*v1*a33*m2*n2*n3 + 2*i*u3*v2*v3*a33 *m2
- 2*u3*v2*a33*m2*n1*n3
2 2 3 3
+ u3*( - i*n1 *n2*n3 + n1*n2 *n3 + 2*n1*n3 + 2*i*n2*n3 )
2 2 2 2
- 2*v1*v3*a33*m2 *n3 + v1*( - m2*n1 *n2 + i*m2*n1*n2 - 2*m2*n2*n3 )
2 2 2 2
+ 2*i*v2*v3*a33*m2 *n3 + v2*( - i*m2*n1 *n2 - m2*n1*n2 + 2*m2*n1*n3 )
2 2 2 3
+ v3 *(a33*m2 *n1 - i*a33*m2 *n2) + v3*( - 2*m2*n1*n2*n3 - 2*i*m2*n3 )
Stop of a subroutine.
Number of garbage collections exceeds max_gc_fac.
The factorization crashed!
which the program can not factorize further.
{HAM,FI} = {4,
a33,
a33,
u1*v1 + u2*v2 + u3*v3,
m2,
a33*n1 + i*a33*n2 n1*n3 + i*n2*n3
u1*u3*------------------- + u1*----------------- - u2*u3*a33*n2
2 4
2 2
- u2*n2*n3 - n1 - i*n1*n2 + 2*n2
+ ------------- + u3*v2*a33*m2 + u3*--------------------------
2 4
v2*m2*n3 - i*m2*n1 + m2*n2
+ ---------- + v3*--------------------}
2 4
4 3 7 3 6 3 5 2 3 4 3
FI=u1 *( - i*a33 *n1 + a33 *n1 *n2 - 3*i*a33 *n1 *n2 + 3*a33 *n1 *n2
3 3 4 3 2 5 3 6 3 7 3
- 3*i*a33 *n1 *n2 + 3*a33 *n1 *n2 - i*a33 *n1*n2 + a33 *n2 ) + u1
3 6 3 4 2 3 2 4
*v2*( - 4*i*a33 *m2*n1 - 12*i*a33 *m2*n1 *n2 - 12*i*a33 *m2*n1 *n2
3 6 3 2 8 2 7
- 4*i*a33 *m2*n2 ) + u1 *(2*i*a33 *n1 - 2*a33 *n1 *n2
2 6 2 2 5 3 2 4 4 2 3 5
+ 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2 + 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2
2 2 6 2 7 2 2 3 7
+ 2*i*a33 *n1 *n2 - 2*a33 *n1*n2 ) + u1 *u2 *( - 2*i*a33 *n1
3 6 3 5 2 3 4 3 3 3 4
+ 2*a33 *n1 *n2 - 6*i*a33 *n1 *n2 + 6*a33 *n1 *n2 - 6*i*a33 *n1 *n2
3 2 5 3 6 3 7 2
+ 6*a33 *n1 *n2 - 2*i*a33 *n1*n2 + 2*a33 *n2 ) + u1 *u2*v1*(
3 6 3 4 2 3 2 4
8*i*a33 *m2*n1 + 24*i*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2
3 6 2 2 7 2 6 2
+ 8*i*a33 *m2*n2 ) + u1 *u2*(2*i*a33 *n1 *n2 - 2*a33 *n1 *n2
2 5 3 2 4 4 2 3 5 2 2 6
+ 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2 + 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2
2 7 2 8 2
+ 2*i*a33 *n1*n2 - 2*a33 *n2 ) + u1 *u3*v3
3 6 3 4 2 3 2 4 3 6
*(4*a33 *m2*n1 + 12*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2 + 4*a33 *m2*n2 ) +
2 2 7 2 6 2 5 2
u1 *u3*(2*i*a33 *n1 *n3 - 2*a33 *n1 *n2*n3 + 6*i*a33 *n1 *n2 *n3
2 4 3 2 3 4 2 2 5
- 6*a33 *n1 *n2 *n3 + 6*i*a33 *n1 *n2 *n3 - 6*a33 *n1 *n2 *n3
2 6 2 7 2 2 7
+ 2*i*a33 *n1*n2 *n3 - 2*a33 *n2 *n3) + u1 *v1*(2*a33 *m2*n1
2 6 2 5 2 2 4 3
- 6*i*a33 *m2*n1 *n2 + 6*a33 *m2*n1 *n2 - 18*i*a33 *m2*n1 *n2
2 3 4 2 2 5 2 6
+ 6*a33 *m2*n1 *n2 - 18*i*a33 *m2*n1 *n2 + 2*a33 *m2*n1*n2
2 7 2 2 7 2 6
- 6*i*a33 *m2*n2 ) + u1 *v2*(6*i*a33 *m2*n1 + 2*a33 *m2*n1 *n2
2 5 2 2 4 3 2 3 4
+ 18*i*a33 *m2*n1 *n2 + 6*a33 *m2*n1 *n2 + 18*i*a33 *m2*n1 *n2
2 2 5 2 6 2 7 2 2
+ 6*a33 *m2*n1 *n2 + 6*i*a33 *m2*n1*n2 + 2*a33 *m2*n2 ) + u1 *v3 *(
3 2 5 3 2 4 3 2 3 2
4*i*a33 *m2 *n1 + 4*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1 *n2
3 2 2 3 3 2 4 3 2 5 2
+ 8*a33 *m2 *n1 *n2 + 4*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + u1 *v3*(
2 6 2 4 2 2 2 4
4*a33 *m2*n1 *n3 + 12*a33 *m2*n1 *n2 *n3 + 12*a33 *m2*n1 *n2 *n3
2 6 2 9 7 2
+ 4*a33 *m2*n2 *n3) + u1 *( - i*a33*n1 - 3*i*a33*n1 *n2
7 2 6 3 6 2 5 4
- 2*i*a33*n1 *n3 - a33*n1 *n2 + 2*a33*n1 *n2*n3 - 3*i*a33*n1 *n2
5 2 2 4 5 4 3 2 3 6
- 6*i*a33*n1 *n2 *n3 - 3*a33*n1 *n2 + 6*a33*n1 *n2 *n3 - i*a33*n1 *n2
3 4 2 2 7 2 5 2
- 6*i*a33*n1 *n2 *n3 - 3*a33*n1 *n2 + 6*a33*n1 *n2 *n3
6 2 9 7 2 2 2 8
- 2*i*a33*n1*n2 *n3 - a33*n2 + 2*a33*n2 *n3 ) + u1*u2 *(2*i*a33 *n1
2 7 2 6 2 2 5 3 2 4 4
- 2*a33 *n1 *n2 + 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2 + 6*i*a33 *n1 *n2
2 3 5 2 2 6 2 7
- 6*a33 *n1 *n2 + 2*i*a33 *n1 *n2 - 2*a33 *n1*n2 ) + u1*u2*u3*v3*(
3 6 3 4 2 3 2 4
4*i*a33 *m2*n1 + 12*i*a33 *m2*n1 *n2 + 12*i*a33 *m2*n1 *n2
3 6 2 7 2 6
+ 4*i*a33 *m2*n2 ) + u1*u2*v1*( - 6*i*a33 *m2*n1 - 2*a33 *m2*n1 *n2
2 5 2 2 4 3 2 3 4
- 18*i*a33 *m2*n1 *n2 - 6*a33 *m2*n1 *n2 - 18*i*a33 *m2*n1 *n2
2 2 5 2 6 2 7
- 6*a33 *m2*n1 *n2 - 6*i*a33 *m2*n1*n2 - 2*a33 *m2*n2 ) + u1*u2*(
8 7 2 6 3 5 4
- 2*i*a33*n1 *n2 + 2*a33*n1 *n2 - 6*i*a33*n1 *n2 + 6*a33*n1 *n2
4 5 3 6 2 7 8
- 6*i*a33*n1 *n2 + 6*a33*n1 *n2 - 2*i*a33*n1 *n2 + 2*a33*n1*n2 ) + u1
3 2 5 3 2 4 3 2 3 2
*u3*v2*v3*(8*a33 *m2 *n1 - 8*i*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1 *n2
3 2 2 3 3 2 4 3 2 5
- 16*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 ) +
2 6 2 4 2
u1*u3*v2*(4*i*a33 *m2*n1 *n3 + 12*i*a33 *m2*n1 *n2 *n3
2 2 4 2 6
+ 12*i*a33 *m2*n1 *n2 *n3 + 4*i*a33 *m2*n2 *n3) + u1*u3*v3*(
2 7 2 6 2 5 2
- 4*a33 *m2*n1 - 4*i*a33 *m2*n1 *n2 - 12*a33 *m2*n1 *n2
2 4 3 2 3 4 2 2 5
- 12*i*a33 *m2*n1 *n2 - 12*a33 *m2*n1 *n2 - 12*i*a33 *m2*n1 *n2
2 6 2 7 8
- 4*a33 *m2*n1*n2 - 4*i*a33 *m2*n2 ) + u1*u3*( - 2*i*a33*n1 *n3
7 6 2 5 3
+ 2*a33*n1 *n2*n3 - 6*i*a33*n1 *n2 *n3 + 6*a33*n1 *n2 *n3
4 4 3 5 2 6
- 6*i*a33*n1 *n2 *n3 + 6*a33*n1 *n2 *n3 - 2*i*a33*n1 *n2 *n3
7 2 3 3 4 3 3 3
+ 2*a33*n1*n2 *n3) + u1*v1 *v2*(16*i*a33 *m2 *n1 + 32*a33 *m2 *n1 *n2
3 3 3 3 3 4 2 2 2 5
+ 32*a33 *m2 *n1*n2 - 16*i*a33 *m2 *n2 ) + u1*v1 *(4*a33 *m2 *n1 *n2
2 2 4 2 2 2 3 3 2 2 2 4
- 4*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 5 2 2 6 2 2 6
+ 4*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + u1*v1*v2*(4*a33 *m2 *n1
2 2 5 2 2 4 2 2 2 3 3
- 4*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 2 4 2 2 5 8
+ 4*a33 *m2 *n1 *n2 - 4*i*a33 *m2 *n1*n2 ) + u1*v1*( - 2*a33*m2*n1
7 6 2 5 3
+ 4*i*a33*m2*n1 *n2 - 4*a33*m2*n1 *n2 + 12*i*a33*m2*n1 *n2
3 5 2 6 7
+ 12*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2 + 4*i*a33*m2*n1*n2
8 3 3 3 4 3 3 3
+ 2*a33*m2*n2 ) + u1*v2 *(8*i*a33 *m2 *n1 + 16*a33 *m2 *n1 *n2
3 3 3 3 3 4 2 2 2 5
+ 16*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 ) + u1*v2 *(4*a33 *m2 *n1 *n2
2 2 4 2 2 2 3 3 2 2 2 4
- 4*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 5 2 2 6 2 3 3 4
+ 4*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + u1*v2*v3 *(8*i*a33 *m2 *n1
3 3 3 3 3 3 3 3 4
+ 16*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 ) + u1*v2*v3*
2 2 5 2 2 4 2 2 3 2
(8*a33 *m2 *n1 *n3 - 8*i*a33 *m2 *n1 *n2*n3 + 16*a33 *m2 *n1 *n2 *n3
2 2 2 3 2 2 4 2 2 5
- 16*i*a33 *m2 *n1 *n2 *n3 + 8*a33 *m2 *n1*n2 *n3 - 8*i*a33 *m2 *n2 *n3) +
8 7 6 2
u1*v2*( - 2*i*a33*m2*n1 - 4*a33*m2*n1 *n2 - 4*i*a33*m2*n1 *n2
6 2 5 3 4 2 2
- 4*i*a33*m2*n1 *n3 - 12*a33*m2*n1 *n2 - 12*i*a33*m2*n1 *n2 *n3
3 5 2 6 2 4 2
- 12*a33*m2*n1 *n2 + 4*i*a33*m2*n1 *n2 - 12*i*a33*m2*n1 *n2 *n3
7 8 6 2 2
- 4*a33*m2*n1*n2 + 2*i*a33*m2*n2 - 4*i*a33*m2*n2 *n3 ) + u1*v3 *(
2 2 6 2 2 5 2 2 4 2
- 4*i*a33 *m2 *n1 - 4*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 3 3 2 2 2 4 2 2 5
- 8*a33 *m2 *n1 *n2 - 4*i*a33 *m2 *n1 *n2 - 4*a33 *m2 *n1*n2 ) + u1*v3*
7 5 2 3 4
( - 4*a33*m2*n1 *n3 - 12*a33*m2*n1 *n2 *n3 - 12*a33*m2*n1 *n2 *n3
6 9 8 2 7 3 7 2
- 4*a33*m2*n1*n2 *n3) + u1*(n1 *n2 + 3*i*n1 *n3 + 4*n1 *n2 - 3*n1 *n2*n3
6 2 2 5 5 5 3 2 4 4 2
+ 9*i*n1 *n2 *n3 + 6*n1 *n2 - 9*n1 *n2 *n3 + 9*i*n1 *n2 *n3
3 7 3 5 2 2 6 2 9 7 2
+ 4*n1 *n2 - 9*n1 *n2 *n3 + 3*i*n1 *n2 *n3 + n1*n2 - 3*n1*n2 *n3 ) +
4 3 7 3 6 3 5 2 3 4 3
u2 *( - i*a33 *n1 + a33 *n1 *n2 - 3*i*a33 *n1 *n2 + 3*a33 *n1 *n2
3 3 4 3 2 5 3 6 3 7 3
- 3*i*a33 *n1 *n2 + 3*a33 *n1 *n2 - i*a33 *n1*n2 + a33 *n2 ) + u2
3 6 3 4 2 3 2 4
*v1*(4*i*a33 *m2*n1 + 12*i*a33 *m2*n1 *n2 + 12*i*a33 *m2*n1 *n2
3 6 3 2 7 2 6 2
+ 4*i*a33 *m2*n2 ) + u2 *(2*i*a33 *n1 *n2 - 2*a33 *n1 *n2
2 5 3 2 4 4 2 3 5 2 2 6
+ 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2 + 6*i*a33 *n1 *n2 - 6*a33 *n1 *n2
2 7 2 8 2
+ 2*i*a33 *n1*n2 - 2*a33 *n2 ) + u2 *u3*v3
3 6 3 4 2 3 2 4 3 6
*(4*a33 *m2*n1 + 12*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2 + 4*a33 *m2*n2 ) +
2 2 7 2 6 2 5 2
u2 *u3*(2*i*a33 *n1 *n3 - 2*a33 *n1 *n2*n3 + 6*i*a33 *n1 *n2 *n3
2 4 3 2 3 4 2 2 5
- 6*a33 *n1 *n2 *n3 + 6*i*a33 *n1 *n2 *n3 - 6*a33 *n1 *n2 *n3
2 6 2 7 2 2 7
+ 2*i*a33 *n1*n2 *n3 - 2*a33 *n2 *n3) + u2 *v1*(2*a33 *m2*n1
2 6 2 5 2 2 4 3
- 6*i*a33 *m2*n1 *n2 + 6*a33 *m2*n1 *n2 - 18*i*a33 *m2*n1 *n2
2 3 4 2 2 5 2 6
+ 6*a33 *m2*n1 *n2 - 18*i*a33 *m2*n1 *n2 + 2*a33 *m2*n1*n2
2 7 2 2 3 2 5 3 2 4
- 6*i*a33 *m2*n2 ) + u2 *v3 *(4*i*a33 *m2 *n1 + 4*a33 *m2 *n1 *n2
3 2 3 2 3 2 2 3 3 2 4
+ 8*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2 + 4*i*a33 *m2 *n1*n2
3 2 5 2 2 6 2 4 2
+ 4*a33 *m2 *n2 ) + u2 *v3*(4*a33 *m2*n1 *n3 + 12*a33 *m2*n1 *n2 *n3
2 2 4 2 6 2 8
+ 12*a33 *m2*n1 *n2 *n3 + 4*a33 *m2*n2 *n3) + u2 *( - a33*n1 *n2
7 2 7 2 6 3 6 2
- i*a33*n1 *n2 - 2*i*a33*n1 *n3 - 3*a33*n1 *n2 + 2*a33*n1 *n2*n3
5 4 5 2 2 4 5
- 3*i*a33*n1 *n2 - 6*i*a33*n1 *n2 *n3 - 3*a33*n1 *n2
4 3 2 3 6 3 4 2 2 7
+ 6*a33*n1 *n2 *n3 - 3*i*a33*n1 *n2 - 6*i*a33*n1 *n2 *n3 - a33*n1 *n2
2 5 2 8 6 2 7 2
+ 6*a33*n1 *n2 *n3 - i*a33*n1*n2 - 2*i*a33*n1*n2 *n3 + 2*a33*n2 *n3 )
3 2 5 3 2 4 3 2 3 2
+ u2*u3*v1*v3*( - 8*a33 *m2 *n1 + 8*i*a33 *m2 *n1 *n2 - 16*a33 *m2 *n1 *n2
3 2 2 3 3 2 4 3 2 5
+ 16*i*a33 *m2 *n1 *n2 - 8*a33 *m2 *n1*n2 + 8*i*a33 *m2 *n2 ) + u2*u3
2 6 2 4 2
*v1*( - 4*i*a33 *m2*n1 *n3 - 12*i*a33 *m2*n1 *n2 *n3
2 2 4 2 6
- 12*i*a33 *m2*n1 *n2 *n3 - 4*i*a33 *m2*n2 *n3) + u2*u3*v3*(
2 7 2 6 2 5 2
- 2*i*a33 *m2*n1 - 6*a33 *m2*n1 *n2 - 6*i*a33 *m2*n1 *n2
2 4 3 2 3 4 2 2 5
- 18*a33 *m2*n1 *n2 - 6*i*a33 *m2*n1 *n2 - 18*a33 *m2*n1 *n2
2 6 2 7 7
- 2*i*a33 *m2*n1*n2 - 6*a33 *m2*n2 ) + u2*u3*( - 2*i*a33*n1 *n2*n3
6 2 5 3 4 4
+ 2*a33*n1 *n2 *n3 - 6*i*a33*n1 *n2 *n3 + 6*a33*n1 *n2 *n3
3 5 2 6 7
- 6*i*a33*n1 *n2 *n3 + 6*a33*n1 *n2 *n3 - 2*i*a33*n1*n2 *n3
8 3 3 3 4 3 3 3
+ 2*a33*n2 *n3) + u2*v1 *( - 8*i*a33 *m2 *n1 - 16*a33 *m2 *n1 *n2
3 3 3 3 3 4 2 2 2 6
- 16*a33 *m2 *n1*n2 + 8*i*a33 *m2 *n2 ) + u2*v1 *( - 4*a33 *m2 *n1
2 2 5 2 2 4 2 2 2 3 3
+ 4*i*a33 *m2 *n1 *n2 - 8*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1 *n2
2 2 2 4 2 2 5 2
- 4*a33 *m2 *n1 *n2 + 4*i*a33 *m2 *n1*n2 ) + u2*v1*v3 *(
3 3 4 3 3 3 3 3 3
- 8*i*a33 *m2 *n1 - 16*a33 *m2 *n1 *n2 - 16*a33 *m2 *n1*n2
3 3 4 2 2 5
+ 8*i*a33 *m2 *n2 ) + u2*v1*v3*( - 8*a33 *m2 *n1 *n3
2 2 4 2 2 3 2
+ 8*i*a33 *m2 *n1 *n2*n3 - 16*a33 *m2 *n1 *n2 *n3
2 2 2 3 2 2 4 2 2 5
+ 16*i*a33 *m2 *n1 *n2 *n3 - 8*a33 *m2 *n1*n2 *n3 + 8*i*a33 *m2 *n2 *n3)
6 2 4 2 2
+ u2*v1*(4*i*a33*m2*n1 *n3 + 12*i*a33*m2*n1 *n2 *n3
2 4 2 6 2 2
+ 12*i*a33*m2*n1 *n2 *n3 + 4*i*a33*m2*n2 *n3 ) + u2*v3 *(
2 2 5 2 2 4 2 2 2 3 3
- 4*i*a33 *m2 *n1 *n2 - 4*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 2 4 2 2 5 2 2 6
- 8*a33 *m2 *n1 *n2 - 4*i*a33 *m2 *n1*n2 - 4*a33 *m2 *n2 ) + u2*v3*(
6 4 3 2 5
- 4*a33*m2*n1 *n2*n3 - 12*a33*m2*n1 *n2 *n3 - 12*a33*m2*n1 *n2 *n3
7 8 2 7 2 6 4
- 4*a33*m2*n2 *n3) + u2*(n1 *n2 + 3*i*n1 *n2*n3 + 4*n1 *n2
6 2 2 5 3 2 4 6 4 4 2
- 3*n1 *n2 *n3 + 9*i*n1 *n2 *n3 + 6*n1 *n2 - 9*n1 *n2 *n3
3 5 2 2 8 2 6 2 7 2 10
+ 9*i*n1 *n2 *n3 + 4*n1 *n2 - 9*n1 *n2 *n3 + 3*i*n1*n2 *n3 + n2
8 2 2 2 3 2 5 3 2 4
- 3*n2 *n3 ) + u3 *v3 *(8*i*a33 *m2 *n1 + 8*a33 *m2 *n1 *n2
3 2 3 2 3 2 2 3 3 2 4
+ 16*i*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1*n2
3 2 5 2 2 6 2 4 2
+ 8*a33 *m2 *n2 ) + u3 *v3*( - 4*a33 *m2*n1 *n3 - 12*a33 *m2*n1 *n2 *n3
2 2 4 2 6 2
- 12*a33 *m2*n1 *n2 *n3 - 4*a33 *m2*n2 *n3) + u3*v1 *v3*(
3 3 4 3 3 3 3 3 3
- 8*a33 *m2 *n1 + 16*i*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1*n2
3 3 4 2 2 2 5 2 2 4
+ 8*a33 *m2 *n2 ) + u3*v1 *( - 4*i*a33 *m2 *n1 *n3 - 4*a33 *m2 *n1 *n2*n3
2 2 3 2 2 2 2 3
- 8*i*a33 *m2 *n1 *n2 *n3 - 8*a33 *m2 *n1 *n2 *n3
2 2 4 2 2 5
- 4*i*a33 *m2 *n1*n2 *n3 - 4*a33 *m2 *n2 *n3) + u3*v1*v2*v3*(
3 3 4 3 3 3 3 3 3
8*i*a33 *m2 *n1 + 16*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1*n2
3 3 4 2 2 6 2 2 5
- 8*i*a33 *m2 *n2 ) + u3*v1*v3*(8*i*a33 *m2 *n1 + 16*a33 *m2 *n1 *n2
2 2 4 2 2 2 3 3 2 2 2 4
+ 8*i*a33 *m2 *n1 *n2 + 32*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
2 2 5 2 2 6 7
+ 16*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 ) + u3*v1*( - 2*a33*m2*n1 *n3
6 5 2 4 3
+ 2*i*a33*m2*n1 *n2*n3 - 6*a33*m2*n1 *n2 *n3 + 6*i*a33*m2*n1 *n2 *n3
3 4 2 5 6
- 6*a33*m2*n1 *n2 *n3 + 6*i*a33*m2*n1 *n2 *n3 - 2*a33*m2*n1*n2 *n3
7 2 3 3 4
+ 2*i*a33*m2*n2 *n3) + u3*v2 *v3*( - 8*a33 *m2 *n1
3 3 3 3 3 3 3 3 4 2
+ 16*i*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1*n2 + 8*a33 *m2 *n2 ) + u3*v2 *
2 2 5 2 2 4 2 2 3 2
( - 4*i*a33 *m2 *n1 *n3 - 4*a33 *m2 *n1 *n2*n3 - 8*i*a33 *m2 *n1 *n2 *n3
2 2 2 3 2 2 4 2 2 5
- 8*a33 *m2 *n1 *n2 *n3 - 4*i*a33 *m2 *n1*n2 *n3 - 4*a33 *m2 *n2 *n3) + u3
2 2 6 2 2 5 2 2 3 3
*v2*v3*( - 4*a33 *m2 *n1 + 12*i*a33 *m2 *n1 *n2 + 24*i*a33 *m2 *n1 *n2
2 2 2 4 2 2 5 2 2 6
+ 12*a33 *m2 *n1 *n2 + 12*i*a33 *m2 *n1*n2 + 8*a33 *m2 *n2 ) + u3
7 6 5 2
*v2*( - 2*i*a33*m2*n1 *n3 - 2*a33*m2*n1 *n2*n3 - 6*i*a33*m2*n1 *n2 *n3
4 3 3 4 2 5
- 6*a33*m2*n1 *n2 *n3 - 6*i*a33*m2*n1 *n2 *n3 - 6*a33*m2*n1 *n2 *n3
6 7 3 3 3 4
- 2*i*a33*m2*n1*n2 *n3 - 2*a33*m2*n2 *n3) + u3*v3 *( - 8*a33 *m2 *n1
3 3 3 3 3 3 3 3 4 2
+ 16*i*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1*n2 + 8*a33 *m2 *n2 ) + u3*v3 *
2 2 5 2 2 4 2 2 3 2
(4*i*a33 *m2 *n1 *n3 + 4*a33 *m2 *n1 *n2*n3 + 8*i*a33 *m2 *n1 *n2 *n3
2 2 2 3 2 2 4 2 2 5
+ 8*a33 *m2 *n1 *n2 *n3 + 4*i*a33 *m2 *n1*n2 *n3 + 4*a33 *m2 *n2 *n3) + u3*
8 7 3 6 3 6 3 5 2 3
(n1 *n2*n3 + 3*i*n1 *n3 + 4*n1 *n2 *n3 - 3*n1 *n2*n3 + 9*i*n1 *n2 *n3
4 5 4 3 3 3 4 3 2 7
+ 6*n1 *n2 *n3 - 9*n1 *n2 *n3 + 9*i*n1 *n2 *n3 + 4*n1 *n2 *n3
2 5 3 6 3 9 7 3 3
- 9*n1 *n2 *n3 + 3*i*n1*n2 *n3 + n2 *n3 - 3*n2 *n3 ) + v1 *(
2 3 5 2 3 4 2 3 3 2
- 4*a33 *m2 *n1 + 12*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2
2 3 2 3 2 3 4 2 3 5 2
+ 8*i*a33 *m2 *n1 *n2 + 12*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + v1 *v2*
2 3 5 2 3 4 2 3 3 2
( - 4*i*a33 *m2 *n1 - 12*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1 *n2
2 3 2 3 2 3 4 2 3 5 2
- 8*a33 *m2 *n1 *n2 + 12*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + v1 *v3*(
2 3 4 2 3 3 2 3 3
- 8*a33 *m2 *n1 *n3 + 16*i*a33 *m2 *n1 *n2*n3 + 16*i*a33 *m2 *n1*n2 *n3
2 3 4 2 2 3 5 2 3 4
+ 8*a33 *m2 *n2 *n3) + v1*v2 *( - 4*a33 *m2 *n1 + 12*i*a33 *m2 *n1 *n2
2 3 3 2 2 3 2 3 2 3 4
+ 8*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1 *n2 + 12*a33 *m2 *n1*n2
2 3 5 2 7 2 6
- 4*i*a33 *m2 *n2 ) + v1*v2*( - 2*a33*m2 *n1 + 6*i*a33*m2 *n1 *n2
2 5 2 2 4 3 2 3 4
+ 2*a33*m2 *n1 *n2 + 10*i*a33*m2 *n1 *n2 + 10*a33*m2 *n1 *n2
2 2 5 2 6 2 7 2
+ 2*i*a33*m2 *n1 *n2 + 6*a33*m2 *n1*n2 - 2*i*a33*m2 *n2 ) + v1*v3 *(
2 3 5 2 3 4 2 3 3 2
- 4*a33 *m2 *n1 + 12*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1 *n2
2 3 2 3 2 3 4 2 3 5
+ 8*i*a33 *m2 *n1 *n2 + 12*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + v1*v3*(
2 6 2 5 2 4 2
4*i*a33*m2 *n1 *n3 + 8*a33*m2 *n1 *n2*n3 + 4*i*a33*m2 *n1 *n2 *n3
2 3 3 2 2 4 2 5
+ 16*a33*m2 *n1 *n2 *n3 - 4*i*a33*m2 *n1 *n2 *n3 + 8*a33*m2 *n1*n2 *n3
2 6 8 7 2 7 2
- 4*i*a33*m2 *n2 *n3) + v1*( - i*m2*n1 *n2 - 2*m2*n1 *n2 + m2*n1 *n3
6 3 6 2 5 4 5 2 2
- 2*i*m2*n1 *n2 - 3*i*m2*n1 *n2*n3 - 6*m2*n1 *n2 + 3*m2*n1 *n2 *n3
4 3 2 3 6 3 4 2 2 7
- 9*i*m2*n1 *n2 *n3 - 6*m2*n1 *n2 + 3*m2*n1 *n2 *n3 + 2*i*m2*n1 *n2
2 5 2 8 6 2 9
- 9*i*m2*n1 *n2 *n3 - 2*m2*n1*n2 + m2*n1*n2 *n3 + i*m2*n2
7 2 3 2 3 5 2 3 4
- 3*i*m2*n2 *n3 ) + v2 *( - 4*i*a33 *m2 *n1 - 12*a33 *m2 *n1 *n2
2 3 3 2 2 3 2 3 2 3 4
+ 8*i*a33 *m2 *n1 *n2 - 8*a33 *m2 *n1 *n2 + 12*i*a33 *m2 *n1*n2
2 3 5 2 2 3 4
+ 4*a33 *m2 *n2 ) + v2 *v3*( - 8*a33 *m2 *n1 *n3
2 3 3 2 3 3 2 3 4
+ 16*i*a33 *m2 *n1 *n2*n3 + 16*i*a33 *m2 *n1*n2 *n3 + 8*a33 *m2 *n2 *n3)
2 2 7 2 6 2 5 2
+ v2 *( - 2*i*a33*m2 *n1 - 6*a33*m2 *n1 *n2 + 2*i*a33*m2 *n1 *n2
2 4 3 2 3 4 2 2 5
- 10*a33*m2 *n1 *n2 + 10*i*a33*m2 *n1 *n2 - 2*a33*m2 *n1 *n2
2 6 2 7 2 2 3 5
+ 6*i*a33*m2 *n1*n2 + 2*a33*m2 *n2 ) + v2*v3 *( - 4*i*a33 *m2 *n1
2 3 4 2 3 3 2 2 3 2 3
- 12*a33 *m2 *n1 *n2 + 8*i*a33 *m2 *n1 *n2 - 8*a33 *m2 *n1 *n2
2 3 4 2 3 5 2 6
+ 12*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + v2*v3*( - 4*a33*m2 *n1 *n3
2 5 2 4 2 2 3 3
+ 8*i*a33*m2 *n1 *n2*n3 - 4*a33*m2 *n1 *n2 *n3 + 16*i*a33*m2 *n1 *n2 *n3
2 2 4 2 5 2 6
+ 4*a33*m2 *n1 *n2 *n3 + 8*i*a33*m2 *n1*n2 *n3 + 4*a33*m2 *n2 *n3) + v2*(
8 7 2 7 2 6 3 6 2
m2*n1 *n2 - 2*i*m2*n1 *n2 + 3*i*m2*n1 *n3 + 2*m2*n1 *n2 + m2*n1 *n2*n3
5 4 5 2 2 4 3 2 3 6
- 6*i*m2*n1 *n2 + 9*i*m2*n1 *n2 *n3 + 3*m2*n1 *n2 *n3 - 6*i*m2*n1 *n2
3 4 2 2 7 2 5 2 8
+ 9*i*m2*n1 *n2 *n3 - 2*m2*n1 *n2 + 3*m2*n1 *n2 *n3 - 2*i*m2*n1*n2
6 2 9 7 2 3 2 3 4
+ 3*i*m2*n1*n2 *n3 - m2*n2 + m2*n2 *n3 ) + v3 *( - 8*a33 *m2 *n1 *n3
2 3 3 2 3 3 2 3 4
+ 16*i*a33 *m2 *n1 *n2*n3 + 16*i*a33 *m2 *n1*n2 *n3 + 8*a33 *m2 *n2 *n3)
2 2 7 2 6 2 5 2
+ v3 *( - i*a33*m2 *n1 - 3*a33*m2 *n1 *n2 + i*a33*m2 *n1 *n2
2 5 2 2 4 3 2 4 2
+ 4*i*a33*m2 *n1 *n3 - 5*a33*m2 *n1 *n2 + 4*a33*m2 *n1 *n2*n3
2 3 4 2 3 2 2 2 2 5
+ 5*i*a33*m2 *n1 *n2 + 8*i*a33*m2 *n1 *n2 *n3 - a33*m2 *n1 *n2
2 2 3 2 2 6 2 4 2
+ 8*a33*m2 *n1 *n2 *n3 + 3*i*a33*m2 *n1*n2 + 4*i*a33*m2 *n1*n2 *n3
2 7 2 5 2 7
+ a33*m2 *n2 + 4*a33*m2 *n2 *n3 ) + v3*( - 2*i*m2*n1 *n2*n3
6 2 6 3 5 3 4 4
- 2*m2*n1 *n2 *n3 + 4*m2*n1 *n3 - 6*i*m2*n1 *n2 *n3 - 6*m2*n1 *n2 *n3
4 2 3 3 5 2 6
+ 12*m2*n1 *n2 *n3 - 6*i*m2*n1 *n2 *n3 - 6*m2*n1 *n2 *n3
2 4 3 7 8 6 3
+ 12*m2*n1 *n2 *n3 - 2*i*m2*n1*n2 *n3 - 2*m2*n2 *n3 + 4*m2*n2 *n3 )
= a product of the elements of: {16*i,
n1 - i*n2,
n1 - i*n2,
n1 - i*n2,
n1 + i*n2,
3 3 3 2 3 2 3 3
4 - a33 *n1 - 3*i*a33 *n1 *n2 + 3*a33 *n1*n2 + i*a33 *n2
u1 *------------------------------------------------------------
16
3 2 3 3 2
3 - a33 *m2*n1 - 2*i*a33 *m2*n1*n2 + a33 *m2*n2
+ u1 *v2*--------------------------------------------------
4
2 4 2 3 2 2 2 2 3
3 a33 *n1 + 3*i*a33 *n1 *n2 - 3*a33 *n1 *n2 - i*a33 *n1*n2
+ u1 *-------------------------------------------------------------
8
3 3 3 2 3 2 3 3
2 2 - a33 *n1 - 3*i*a33 *n1 *n2 + 3*a33 *n1*n2 + i*a33 *n2
+ u1 *u2 *------------------------------------------------------------
8
3 2 3 3 2
2 a33 *m2*n1 + 2*i*a33 *m2*n1*n2 - a33 *m2*n2
+ u1 *u2*v1*-----------------------------------------------
2
2 3 2 2 2 2 3 2 4
2 a33 *n1 *n2 + 3*i*a33 *n1 *n2 - 3*a33 *n1*n2 - i*a33 *n2
+ u1 *u2*-------------------------------------------------------------
8
3 2 3 3 2
2 - i*a33 *m2*n1 + 2*a33 *m2*n1*n2 + i*a33 *m2*n2 2
+ u1 *u3*v3*---------------------------------------------------- + u1 *u3
4
2 3 2 2 2 2 2 3
a33 *n1 *n3 + 3*i*a33 *n1 *n2*n3 - 3*a33 *n1*n2 *n3 - i*a33 *n2 *n3 2
*--------------------------------------------------------------------- + u1
8
2 3 2 2 2 2 2 3
- i*a33 *m2*n1 - a33 *m2*n1 *n2 - 5*i*a33 *m2*n1*n2 + 3*a33 *m2*n2
*v1*------------------------------------------------------------------------
8
2
+ u1 *v2
2 3 2 2 2 2 2 3
3*a33 *m2*n1 + 5*i*a33 *m2*n1 *n2 - a33 *m2*n1*n2 + i*a33 *m2*n2
*---------------------------------------------------------------------
8
3 2 3 2
2 2 a33 *m2 *n1 + i*a33 *m2 *n2
+ u1 *v3 *-----------------------------
4
2 2 2 2 2
2 - i*a33 *m2*n1 *n3 + 2*a33 *m2*n1*n2*n3 + i*a33 *m2*n2 *n3 2
+ u1 *v3*------------------------------------------------------------- + u1
4
5 4 3 2 3 2 2 3
*( - a33*n1 - 2*i*a33*n1 *n2 + a33*n1 *n2 - 2*a33*n1 *n3 + i*a33*n1 *n2
2 2 4 2 2 5
- 6*i*a33*n1 *n2*n3 - 2*a33*n1*n2 + 6*a33*n1*n2 *n3 - i*a33*n2
3 2
+ 2*i*a33*n2 *n3 )/16
2 4 2 3 2 2 2 2 3
2 a33 *n1 + 3*i*a33 *n1 *n2 - 3*a33 *n1 *n2 - i*a33 *n1*n2
+ u1*u2 *-------------------------------------------------------------
8
3 2 3 3 2
a33 *m2*n1 + 2*i*a33 *m2*n1*n2 - a33 *m2*n2
+ u1*u2*u3*v3*----------------------------------------------- + u1*u2*v1
4
2 3 2 2 2 2 2 3
- 3*a33 *m2*n1 - 5*i*a33 *m2*n1 *n2 + a33 *m2*n1*n2 - i*a33 *m2*n2
*------------------------------------------------------------------------
8
4 3 2 2 3 4
- a33*n1 *n2 - 3*i*a33*n1 *n2 + 3*a33*n1 *n2 + i*a33*n1*n2
+ u1*u2*----------------------------------------------------------------
8
3 2 3 2
- i*a33 *m2 *n1 + a33 *m2 *n2
+ u1*u3*v2*v3*--------------------------------
2
2 2 2 2 2
a33 *m2*n1 *n3 + 2*i*a33 *m2*n1*n2*n3 - a33 *m2*n2 *n3
+ u1*u3*v2*-------------------------------------------------------- + u1*u3
4
2 3 2 2 2 2 2 3
i*a33 *m2*n1 - 3*a33 *m2*n1 *n2 - 3*i*a33 *m2*n1*n2 + a33 *m2*n2
*v3*--------------------------------------------------------------------- +
4
u1*u3
4 3 2 2 3
- a33*n1 *n3 - 3*i*a33*n1 *n2*n3 + 3*a33*n1 *n2 *n3 + i*a33*n1*n2 *n3
*------------------------------------------------------------------------
8
2 2 2 2 2
2 3 3 2 - i*a33 *m2 *n1*n2 + a33 *m2 *n2
+ u1*v1 *v2*a33 *m2 + u1*v1 *------------------------------------
4
2 2 2 2 2
- i*a33 *m2 *n1 + a33 *m2 *n1*n2
+ u1*v1*v2*------------------------------------
4
4 2 2 4
i*a33*m2*n1 + 2*i*a33*m2*n1 *n2 + i*a33*m2*n2
+ u1*v1*--------------------------------------------------
8
3 3 3 2 2 2 2 2
u1*v2 *a33 *m2 2 - i*a33 *m2 *n1*n2 + a33 *m2 *n2
+ ----------------- + u1*v2 *------------------------------------
2 4
2 3 3 2 2 2 2
u1*v2*v3 *a33 *m2 - i*a33 *m2 *n1*n3 + a33 *m2 *n2*n3
+ -------------------- + u1*v2*v3*-------------------------------------- +
2 2
4 2 2 2 2
u1*v2*( - a33*m2*n1 - 2*a33*m2*n1 *n2 - 2*a33*m2*n1 *n3
2 4 2 2
- 4*i*a33*m2*n1*n2*n3 - a33*m2*n2 + 2*a33*m2*n2 *n3 )/8
2 2 2 2 2
2 - a33 *m2 *n1 - i*a33 *m2 *n1*n2
+ u1*v3 *------------------------------------
4
3 2 2
i*a33*m2*n1 *n3 - 2*a33*m2*n1 *n2*n3 - i*a33*m2*n1*n2 *n3
+ u1*v3*----------------------------------------------------------- + u1*(
4
5 4 2 4 2 3 2 2 4
- i*n1 *n2 + 2*n1 *n2 + 3*n1 *n3 + 9*i*n1 *n2*n3 + 2*n1 *n2
2 2 2 5 3 2
- 9*n1 *n2 *n3 + i*n1*n2 - 3*i*n1*n2 *n3 )/16
3 3 3 2 3 2 3 3
4 - a33 *n1 - 3*i*a33 *n1 *n2 + 3*a33 *n1*n2 + i*a33 *n2
+ u2 *------------------------------------------------------------
16
3 2 3 3 2
3 a33 *m2*n1 + 2*i*a33 *m2*n1*n2 - a33 *m2*n2
+ u2 *v1*-----------------------------------------------
4
2 3 2 2 2 2 3 2 4
3 a33 *n1 *n2 + 3*i*a33 *n1 *n2 - 3*a33 *n1*n2 - i*a33 *n2
+ u2 *-------------------------------------------------------------
8
3 2 3 3 2
2 - i*a33 *m2*n1 + 2*a33 *m2*n1*n2 + i*a33 *m2*n2 2
+ u2 *u3*v3*---------------------------------------------------- + u2 *u3
4
2 3 2 2 2 2 2 3
a33 *n1 *n3 + 3*i*a33 *n1 *n2*n3 - 3*a33 *n1*n2 *n3 - i*a33 *n2 *n3 2
*--------------------------------------------------------------------- + u2
8
2 3 2 2 2 2 2 3
- i*a33 *m2*n1 - a33 *m2*n1 *n2 - 5*i*a33 *m2*n1*n2 + 3*a33 *m2*n2
*v1*------------------------------------------------------------------------
8
3 2 3 2
2 2 a33 *m2 *n1 + i*a33 *m2 *n2
+ u2 *v3 *-----------------------------
4
2 2 2 2 2
2 - i*a33 *m2*n1 *n3 + 2*a33 *m2*n1*n2*n3 + i*a33 *m2*n2 *n3 2
+ u2 *v3*------------------------------------------------------------- + u2
4
4 3 2 3 2 2 3
*(i*a33*n1 *n2 - 3*a33*n1 *n2 - 2*a33*n1 *n3 - 3*i*a33*n1 *n2
2 2 4 2 2 3 2
- 6*i*a33*n1 *n2*n3 + a33*n1*n2 + 6*a33*n1*n2 *n3 + 2*i*a33*n2 *n3 )/16
3 2 3 2
i*a33 *m2 *n1 - a33 *m2 *n2
+ u2*u3*v1*v3*-----------------------------
2
2 2 2 2 2
- a33 *m2*n1 *n3 - 2*i*a33 *m2*n1*n2*n3 + a33 *m2*n2 *n3
+ u2*u3*v1*----------------------------------------------------------- + u2
4
*u3*v3
2 3 2 2 2 2 2 3
- a33 *m2*n1 + i*a33 *m2*n1 *n2 - 5*a33 *m2*n1*n2 - 3*i*a33 *m2*n2
*------------------------------------------------------------------------ +
8
u2*u3
3 2 2 3 4
- a33*n1 *n2*n3 - 3*i*a33*n1 *n2 *n3 + 3*a33*n1*n2 *n3 + i*a33*n2 *n3
*------------------------------------------------------------------------
8
3 3 3 2 2 2 2 2
- u2*v1 *a33 *m2 2 i*a33 *m2 *n1 - a33 *m2 *n1*n2
+ -------------------- + u2*v1 *---------------------------------
2 4
2 3 3 2 2 2 2
- u2*v1*v3 *a33 *m2 i*a33 *m2 *n1*n3 - a33 *m2 *n2*n3
+ ----------------------- + u2*v1*v3*-----------------------------------
2 2
2 2 2 2 2
a33*m2*n1 *n3 + 2*i*a33*m2*n1*n2*n3 - a33*m2*n2 *n3
+ u2*v1*--------------------------------------------------------
4
2 2 2 2 2
2 - a33 *m2 *n1*n2 - i*a33 *m2 *n2
+ u2*v3 *------------------------------------
4
2 2 3
i*a33*m2*n1 *n2*n3 - 2*a33*m2*n1*n2 *n3 - i*a33*m2*n2 *n3
+ u2*v3*----------------------------------------------------------- + u2*(
4
4 2 3 3 3 2 2 2 2 5
- i*n1 *n2 + 2*n1 *n2 + 3*n1 *n2*n3 + 9*i*n1 *n2 *n3 + 2*n1*n2
3 2 6 4 2
- 9*n1*n2 *n3 + i*n2 - 3*i*n2 *n3 )/16
3 2 3 2
2 2 a33 *m2 *n1 + i*a33 *m2 *n2
+ u3 *v3 *-----------------------------
2
2 2 2 2 2
2 i*a33 *m2*n1 *n3 - 2*a33 *m2*n1*n2*n3 - i*a33 *m2*n2 *n3
+ u3 *v3*----------------------------------------------------------
4
2 3 3 2 2 2 2
i*u3*v1 *v3*a33 *m2 2 - a33 *m2 *n1*n3 - i*a33 *m2 *n2*n3
+ ---------------------- + u3*v1 *--------------------------------------
2 4
3 3 2 2 2 2 2 2
u3*v1*v2*v3*a33 *m2 a33 *m2 *n1 + a33 *m2 *n2
+ ---------------------- + u3*v1*v3*----------------------------- + u3*v1
2 2
3 2 2 3
i*a33*m2*n1 *n3 - a33*m2*n1 *n2*n3 + i*a33*m2*n1*n2 *n3 - a33*m2*n2 *n3
*-------------------------------------------------------------------------
8
2 3 3 2 2 2 2
i*u3*v2 *v3*a33 *m2 2 - a33 *m2 *n1*n3 - i*a33 *m2 *n2*n3
+ ---------------------- + u3*v2 *--------------------------------------
2 4
2 2 2 2 2 2 2 2
i*a33 *m2 *n1 + a33 *m2 *n1*n2 + 2*i*a33 *m2 *n2
+ u3*v2*v3*---------------------------------------------------- + u3*v2
4
3 2 2 3
- a33*m2*n1 *n3 - i*a33*m2*n1 *n2*n3 - a33*m2*n1*n2 *n3 - i*a33*m2*n2 *n3
*----------------------------------------------------------------------------
8
3 3 3 2 2 2 2
i*u3*v3 *a33 *m2 2 a33 *m2 *n1*n3 + i*a33 *m2 *n2*n3
+ ------------------- + u3*v3 *----------------------------------- + u3*(
2 4
4 3 2 3 3 2 3 4
- i*n1 *n2*n3 + 2*n1 *n2 *n3 + 3*n1 *n3 + 9*i*n1 *n2*n3 + 2*n1*n2 *n3
2 3 5 3 3
- 9*n1*n2 *n3 + i*n2 *n3 - 3*i*n2 *n3 )/16
2 3 2 3
3 i*a33 *m2 *n1 + a33 *m2 *n2
+ v1 *-----------------------------
4
2 3 2 3 2 2 3
2 - a33 *m2 *n1 + i*a33 *m2 *n2 i*v1 *v3*a33 *m2 *n3
+ v1 *v2*-------------------------------- + ----------------------
4 2
2 3 2 3
2 i*a33 *m2 *n1 + a33 *m2 *n2
+ v1*v2 *-----------------------------
4
2 3 2 2 2 2 2 3
i*a33*m2 *n1 + a33*m2 *n1 *n2 + i*a33*m2 *n1*n2 + a33*m2 *n2
+ v1*v2*-----------------------------------------------------------------
8
2 3 2 3
2 i*a33 *m2 *n1 + a33 *m2 *n2
+ v1*v3 *-----------------------------
4
2 2 2 2
a33*m2 *n1 *n3 + a33*m2 *n2 *n3 4 3 2
+ v1*v3*--------------------------------- + v1*( - m2*n1 *n2 - i*m2*n1 *n3
4
2 3 2 2 2 2 5
- 2*m2*n1 *n2 - m2*n1 *n2*n3 - 5*i*m2*n1*n2 *n3 - m2*n2
2 3 2 3
3 2 3 - a33 *m2 *n1 + i*a33 *m2 *n2
+ 3*m2*n2 *n3 )/16 + v2 *--------------------------------
4
2 2 3
i*v2 *v3*a33 *m2 *n3
+ ----------------------
2
2 3 2 2 2 2 2 3
2 - a33*m2 *n1 + i*a33*m2 *n1 *n2 - a33*m2 *n1*n2 + i*a33*m2 *n2
+ v2 *--------------------------------------------------------------------
8
2 3 2 3
2 - a33 *m2 *n1 + i*a33 *m2 *n2
+ v2*v3 *--------------------------------
4
2 2 2 2
i*a33*m2 *n1 *n3 + i*a33*m2 *n2 *n3 4
+ v2*v3*------------------------------------- + v2*( - i*m2*n1 *n2
4
3 2 2 3 2 2 2 2
+ 3*m2*n1 *n3 - 2*i*m2*n1 *n2 + 5*i*m2*n1 *n2*n3 - m2*n1*n2 *n3
3 2 3
5 3 2 i*v3 *a33 *m2 *n3 2 2 3
- i*m2*n2 + i*m2*n2 *n3 )/16 + ------------------- + v3 *( - a33*m2 *n1
2
2 2 2 2 2 2 2 3
+ i*a33*m2 *n1 *n2 - a33*m2 *n1*n2 + 4*a33*m2 *n1*n3 + i*a33*m2 *n2
2 2 3 2 2
+ 4*i*a33*m2 *n2*n3 )/16 + v3*( - m2*n1 *n2*n3 - i*m2*n1 *n2 *n3
2 3 3 3 4
- 2*i*m2*n1 *n3 - m2*n1*n2 *n3 + 4*m2*n1*n2*n3 - i*m2*n2 *n3
2 3
+ 2*i*m2*n2 *n3 )/8}
Stop of a subroutine.
Number of garbage collections exceeds max_gc_fac.
The factorization crashed!
3 4 6 4 4 2
{HAM,FI} = {u1 *u3*v1*( - 8*i*a33 *m2*n1 - 24*i*a33 *m2*n1 *n2
4 2 4 4 6 3
- 24*i*a33 *m2*n1 *n2 - 8*i*a33 *m2*n2 ) + u1 *v1*(
3 6 3 4 2
- 4*i*a33 *m2*n1 *n3 - 12*i*a33 *m2*n1 *n2 *n3
3 2 4 3 6 2
- 12*i*a33 *m2*n1 *n2 *n3 - 4*i*a33 *m2*n2 *n3) + u1 *u2*u3*v2*(
4 6 4 4 2 4 2 4
- 8*i*a33 *m2*n1 - 24*i*a33 *m2*n1 *n2 - 24*i*a33 *m2*n1 *n2
4 6 2 3 6
- 8*i*a33 *m2*n2 ) + u1 *u2*v2*( - 4*i*a33 *m2*n1 *n3
3 4 2 3 2 4
- 12*i*a33 *m2*n1 *n2 *n3 - 12*i*a33 *m2*n1 *n2 *n3
3 6 2 2 4 6
- 4*i*a33 *m2*n2 *n3) + u1 *u3 *v3*( - 8*i*a33 *m2*n1
4 4 2 4 2 4 4 6
- 24*i*a33 *m2*n1 *n2 - 24*i*a33 *m2*n1 *n2 - 8*i*a33 *m2*n2 )
2 3 7 3 6
+ u1 *u3*v1*(8*i*a33 *m2*n1 + 4*a33 *m2*n1 *n2
3 5 2 3 4 3
+ 24*i*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2
3 3 4 3 2 5 3 6
+ 24*i*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2 + 8*i*a33 *m2*n1*n2
3 7 2 3 6
+ 4*a33 *m2*n2 ) + u1 *u3*v3*( - 4*i*a33 *m2*n1 *n3
3 4 2 3 2 4
- 12*i*a33 *m2*n1 *n2 *n3 - 12*i*a33 *m2*n1 *n2 *n3
3 6 2 3 2 6
- 4*i*a33 *m2*n2 *n3) + u1 *v1*v3*( - 4*a33 *m2 *n1
3 2 5 3 2 4 2
+ 8*i*a33 *m2 *n1 *n2 - 4*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
+ 16*i*a33 *m2 *n1 *n2 + 4*a33 *m2 *n1 *n2
3 2 5 3 2 6 2
+ 8*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + u1 *v1*(
2 7 2 6 2 5 2
2*i*a33 *m2*n1 *n3 + 2*a33 *m2*n1 *n2*n3 + 6*i*a33 *m2*n1 *n2 *n3
2 4 3 2 3 4
+ 6*a33 *m2*n1 *n2 *n3 + 6*i*a33 *m2*n1 *n2 *n3
2 2 5 2 6
+ 6*a33 *m2*n1 *n2 *n3 + 2*i*a33 *m2*n1*n2 *n3
2 7 2 4 6
+ 2*a33 *m2*n2 *n3) + u1*u2 *u3*v1*(8*i*a33 *m2*n1
4 4 2 4 2 4 4 6
+ 24*i*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2 + 8*i*a33 *m2*n2 )
2 3 6 3 4 2
+ u1*u2 *v1*(4*i*a33 *m2*n1 *n3 + 12*i*a33 *m2*n1 *n2 *n3
3 2 4 3 6
+ 12*i*a33 *m2*n1 *n2 *n3 + 4*i*a33 *m2*n2 *n3) + u1*u2*u3*v1*(
3 6 3 4 3
- 12*i*a33 *m2*n1 *n2 - 36*i*a33 *m2*n1 *n2
3 2 5 3 7
- 36*i*a33 *m2*n1 *n2 - 12*i*a33 *m2*n2 ) + u1*u2*u3*v2*(
3 7 3 6 3 5 2
8*i*a33 *m2*n1 + 4*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2
3 4 3 3 3 4 3 2 5
+ 12*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2
3 6 3 7
+ 8*i*a33 *m2*n1*n2 + 4*a33 *m2*n2 ) + u1*u2*v1*v3*(
3 2 6 3 2 5 3 2 4 2
- 12*i*a33 *m2 *n1 - 8*a33 *m2 *n1 *n2 - 28*i*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
- 16*a33 *m2 *n1 *n2 - 20*i*a33 *m2 *n1 *n2
3 2 5 3 2 6
- 8*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + u1*u2*v1*(
2 6 2 4 3
- 4*i*a33 *m2*n1 *n2*n3 - 12*i*a33 *m2*n1 *n2 *n3
2 2 5 2 7
- 12*i*a33 *m2*n1 *n2 *n3 - 4*i*a33 *m2*n2 *n3) + u1*u2*v2*v3*(
3 2 6 3 2 5 3 2 4 2
- 4*a33 *m2 *n1 + 8*i*a33 *m2 *n1 *n2 - 4*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
+ 16*i*a33 *m2 *n1 *n2 + 4*a33 *m2 *n1 *n2
3 2 5 3 2 6
+ 8*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + u1*u2*v2*(
2 7 2 6 2 5 2
2*i*a33 *m2*n1 *n3 + 2*a33 *m2*n1 *n2*n3 + 6*i*a33 *m2*n1 *n2 *n3
2 4 3 2 3 4
+ 6*a33 *m2*n1 *n2 *n3 + 6*i*a33 *m2*n1 *n2 *n3
2 2 5 2 6
+ 6*a33 *m2*n1 *n2 *n3 + 2*i*a33 *m2*n1*n2 *n3
2 7 2 3 7
+ 2*a33 *m2*n2 *n3) + u1*u3 *v3*(8*i*a33 *m2*n1
3 6 3 5 2 3 4 3
+ 4*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2
3 3 4 3 2 5 3 6
+ 24*i*a33 *m2*n1 *n2 + 12*a33 *m2*n1 *n2 + 8*i*a33 *m2*n1*n2
3 7 3 4 3 4
+ 4*a33 *m2*n2 ) + u1*u3*v1 *( - 16*i*a33 *m2 *n1
4 3 3 4 3 3 4 3 4
- 32*a33 *m2 *n1 *n2 - 32*a33 *m2 *n1*n2 + 16*i*a33 *m2 *n2 ) +
2 4 3 4 4 3 3
u1*u3*v1*v2 *(16*i*a33 *m2 *n1 + 32*a33 *m2 *n1 *n2
4 3 3 4 3 4
+ 32*a33 *m2 *n1*n2 - 16*i*a33 *m2 *n2 ) + u1*u3*v1*v2*(
3 2 5 3 2 4 2 3 2 3 3
8*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1 *n2
3 2 2 4 3 2 5 3 2 6
- 16*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 )
2 8 2 7
+ u1*u3*v1*( - 2*i*a33 *m2*n1 - 2*a33 *m2*n1 *n2
2 6 2 2 5 3 2 4 4
- 2*i*a33 *m2*n1 *n2 - 6*a33 *m2*n1 *n2 + 6*i*a33 *m2*n1 *n2
2 3 5 2 2 6 2 7
- 6*a33 *m2*n1 *n2 + 10*i*a33 *m2*n1 *n2 - 2*a33 *m2*n1*n2
2 8 2 3 2 6
+ 4*i*a33 *m2*n2 ) + u1*u3*v3 *( - 4*a33 *m2 *n1
3 2 5 3 2 4 2
+ 8*i*a33 *m2 *n1 *n2 - 4*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
+ 16*i*a33 *m2 *n1 *n2 + 4*a33 *m2 *n1 *n2
3 2 5 3 2 6
+ 8*i*a33 *m2 *n1*n2 + 4*a33 *m2 *n2 ) + u1*u3*v3*(
2 7 2 6 2 5 2
2*i*a33 *m2*n1 *n3 + 2*a33 *m2*n1 *n2*n3 + 6*i*a33 *m2*n1 *n2 *n3
2 4 3 2 3 4
+ 6*a33 *m2*n1 *n2 *n3 + 6*i*a33 *m2*n1 *n2 *n3
2 2 5 2 6
+ 6*a33 *m2*n1 *n2 *n3 + 2*i*a33 *m2*n1*n2 *n3
2 7 3 3 3 4
+ 2*a33 *m2*n2 *n3) + u1*v1 *( - 8*i*a33 *m2 *n1 *n3
3 3 3 3 3 3
- 16*a33 *m2 *n1 *n2*n3 - 16*a33 *m2 *n1*n2 *n3
3 3 4 2 3 3 5
+ 8*i*a33 *m2 *n2 *n3) + u1*v1 *v3*(16*i*a33 *m2 *n1
3 3 4 3 3 3 2
+ 24*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1 *n2
3 3 2 3 3 3 5 2
+ 32*a33 *m2 *n1 *n2 + 8*a33 *m2 *n2 ) + u1*v1 *(
2 2 5 2 2 4 2
- 4*i*a33 *m2 *n1 *n2*n3 - 4*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
- 8*i*a33 *m2 *n1 *n2 *n3 - 8*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6 2
- 4*i*a33 *m2 *n1*n2 *n3 - 4*a33 *m2 *n2 *n3) + u1*v1*v2 *(
3 3 4 3 3 3
8*i*a33 *m2 *n1 *n3 + 16*a33 *m2 *n1 *n2*n3
3 3 3 3 3 4
+ 16*a33 *m2 *n1*n2 *n3 - 8*i*a33 *m2 *n2 *n3) + u1*v1*v2*v3*(
3 3 5 3 3 4 3 3 2 3
8*a33 *m2 *n1 - 16*i*a33 *m2 *n1 *n2 - 16*i*a33 *m2 *n1 *n2
3 3 4 2 2 6
- 8*a33 *m2 *n1*n2 ) + u1*v1*v2*(4*i*a33 *m2 *n1 *n3
2 2 5 2 2 4 2
+ 8*a33 *m2 *n1 *n2*n3 + 4*i*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
+ 16*a33 *m2 *n1 *n2 *n3 - 4*i*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6
+ 8*a33 *m2 *n1*n2 *n3 - 4*i*a33 *m2 *n2 *n3) + u1*v1*v3*(
2 2 7 2 2 6 2 2 5 2
2*a33 *m2 *n1 + 2*i*a33 *m2 *n1 *n2 + 2*a33 *m2 *n1 *n2
2 2 4 3 2 2 3 4
+ 10*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1 *n2
2 2 2 5 2 2 6 2 2 7
+ 14*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1*n2 + 6*i*a33 *m2 *n2 )
3 4 6 4 4 2
+ u2 *u3*v2*(8*i*a33 *m2*n1 + 24*i*a33 *m2*n1 *n2
4 2 4 4 6 3
+ 24*i*a33 *m2*n1 *n2 + 8*i*a33 *m2*n2 ) + u2 *v2*(
3 6 3 4 2
4*i*a33 *m2*n1 *n3 + 12*i*a33 *m2*n1 *n2 *n3
3 2 4 3 6 2 2
+ 12*i*a33 *m2*n1 *n2 *n3 + 4*i*a33 *m2*n2 *n3) + u2 *u3 *v3*(
4 6 4 4 2 4 2 4
8*i*a33 *m2*n1 + 24*i*a33 *m2*n1 *n2 + 24*i*a33 *m2*n1 *n2
4 6 2 3 6
+ 8*i*a33 *m2*n2 ) + u2 *u3*v2*( - 12*i*a33 *m2*n1 *n2
3 4 3 3 2 5 3 7
- 36*i*a33 *m2*n1 *n2 - 36*i*a33 *m2*n1 *n2 - 12*i*a33 *m2*n2
2 3 6 3 4 2
) + u2 *u3*v3*(4*i*a33 *m2*n1 *n3 + 12*i*a33 *m2*n1 *n2 *n3
3 2 4 3 6 2
+ 12*i*a33 *m2*n1 *n2 *n3 + 4*i*a33 *m2*n2 *n3) + u2 *v2*v3*(
3 2 6 3 2 5 3 2 4 2
- 12*i*a33 *m2 *n1 - 8*a33 *m2 *n1 *n2 - 28*i*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
- 16*a33 *m2 *n1 *n2 - 20*i*a33 *m2 *n1 *n2
3 2 5 3 2 6 2
- 8*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 ) + u2 *v2*(
2 6 2 4 3
- 4*i*a33 *m2*n1 *n2*n3 - 12*i*a33 *m2*n1 *n2 *n3
2 2 5 2 7 2
- 12*i*a33 *m2*n1 *n2 *n3 - 4*i*a33 *m2*n2 *n3) + u2*u3 *v3*(
3 6 3 4 3
- 12*i*a33 *m2*n1 *n2 - 36*i*a33 *m2*n1 *n2
3 2 5 3 7 2
- 36*i*a33 *m2*n1 *n2 - 12*i*a33 *m2*n2 ) + u2*u3*v1 *v2*(
4 3 4 4 3 3 4 3 3
- 16*i*a33 *m2 *n1 - 32*a33 *m2 *n1 *n2 - 32*a33 *m2 *n1*n2
4 3 4 3 4 3 4
+ 16*i*a33 *m2 *n2 ) + u2*u3*v2 *(16*i*a33 *m2 *n1
4 3 3 4 3 3 4 3 4
+ 32*a33 *m2 *n1 *n2 + 32*a33 *m2 *n1*n2 - 16*i*a33 *m2 *n2 ) +
2 3 2 5 3 2 4 2
u2*u3*v2 *(8*a33 *m2 *n1 *n2 - 8*i*a33 *m2 *n1 *n2
3 2 3 3 3 2 2 4
+ 16*a33 *m2 *n1 *n2 - 16*i*a33 *m2 *n1 *n2
3 2 5 3 2 6
+ 8*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 ) + u2*u3*v2*(
2 8 2 7 2 6 2
- 2*i*a33 *m2*n1 - 2*a33 *m2*n1 *n2 - 2*i*a33 *m2*n1 *n2
2 5 3 2 4 4 2 3 5
- 6*a33 *m2*n1 *n2 + 6*i*a33 *m2*n1 *n2 - 6*a33 *m2*n1 *n2
2 2 6 2 7 2 8
+ 10*i*a33 *m2*n1 *n2 - 2*a33 *m2*n1*n2 + 4*i*a33 *m2*n2 ) +
2 3 2 6 3 2 5
u2*u3*v3 *( - 12*i*a33 *m2 *n1 - 8*a33 *m2 *n1 *n2
3 2 4 2 3 2 3 3
- 28*i*a33 *m2 *n1 *n2 - 16*a33 *m2 *n1 *n2
3 2 2 4 3 2 5 3 2 6
- 20*i*a33 *m2 *n1 *n2 - 8*a33 *m2 *n1*n2 - 4*i*a33 *m2 *n2 )
2 6 2 4 3
+ u2*u3*v3*( - 4*i*a33 *m2*n1 *n2*n3 - 12*i*a33 *m2*n1 *n2 *n3
2 2 5 2 7 2
- 12*i*a33 *m2*n1 *n2 *n3 - 4*i*a33 *m2*n2 *n3) + u2*v1 *v2*(
3 3 4 3 3 3
- 8*i*a33 *m2 *n1 *n3 - 16*a33 *m2 *n1 *n2*n3
3 3 3 3 3 4
- 16*a33 *m2 *n1*n2 *n3 + 8*i*a33 *m2 *n2 *n3) + u2*v1*v2*v3*(
3 3 5 3 3 4 3 3 3 2
16*i*a33 *m2 *n1 + 24*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1 *n2
3 3 2 3 3 3 5
+ 32*a33 *m2 *n1 *n2 + 8*a33 *m2 *n2 ) + u2*v1*v2*(
2 2 5 2 2 4 2
- 4*i*a33 *m2 *n1 *n2*n3 - 4*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
- 8*i*a33 *m2 *n1 *n2 *n3 - 8*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6 3
- 4*i*a33 *m2 *n1*n2 *n3 - 4*a33 *m2 *n2 *n3) + u2*v2 *(
3 3 4 3 3 3
8*i*a33 *m2 *n1 *n3 + 16*a33 *m2 *n1 *n2*n3
3 3 3 3 3 4 2
+ 16*a33 *m2 *n1*n2 *n3 - 8*i*a33 *m2 *n2 *n3) + u2*v2 *v3*(
3 3 5 3 3 4 3 3 2 3
8*a33 *m2 *n1 - 16*i*a33 *m2 *n1 *n2 - 16*i*a33 *m2 *n1 *n2
3 3 4 2 2 2 6
- 8*a33 *m2 *n1*n2 ) + u2*v2 *(4*i*a33 *m2 *n1 *n3
2 2 5 2 2 4 2
+ 8*a33 *m2 *n1 *n2*n3 + 4*i*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
+ 16*a33 *m2 *n1 *n2 *n3 - 4*i*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6
+ 8*a33 *m2 *n1*n2 *n3 - 4*i*a33 *m2 *n2 *n3) + u2*v2*v3*(
2 2 7 2 2 6 2 2 5 2
2*a33 *m2 *n1 + 2*i*a33 *m2 *n1 *n2 + 2*a33 *m2 *n1 *n2
2 2 4 3 2 2 3 4
+ 10*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1 *n2
2 2 2 5 2 2 6 2 2 7
+ 14*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1*n2 + 6*i*a33 *m2 *n2 )
2 2 4 3 4 4 3 3
+ u3 *v1 *v3*( - 16*i*a33 *m2 *n1 - 32*a33 *m2 *n1 *n2
4 3 3 4 3 4 2 2
- 32*a33 *m2 *n1*n2 + 16*i*a33 *m2 *n2 ) + u3 *v2 *v3*(
4 3 4 4 3 3 4 3 3
16*i*a33 *m2 *n1 + 32*a33 *m2 *n1 *n2 + 32*a33 *m2 *n1*n2
4 3 4 2 3 2 5
- 16*i*a33 *m2 *n2 ) + u3 *v2*v3*(8*a33 *m2 *n1 *n2
3 2 4 2 3 2 3 3
- 8*i*a33 *m2 *n1 *n2 + 16*a33 *m2 *n1 *n2
3 2 2 4 3 2 5 3 2 6
- 16*i*a33 *m2 *n1 *n2 + 8*a33 *m2 *n1*n2 - 8*i*a33 *m2 *n2 )
2 2 8 2 7
+ u3 *v3*( - 2*i*a33 *m2*n1 - 2*a33 *m2*n1 *n2
2 6 2 2 5 3 2 4 4
- 2*i*a33 *m2*n1 *n2 - 6*a33 *m2*n1 *n2 + 6*i*a33 *m2*n1 *n2
2 3 5 2 2 6 2 7
- 6*a33 *m2*n1 *n2 + 10*i*a33 *m2*n1 *n2 - 2*a33 *m2*n1*n2
2 8 2 3 3 4
+ 4*i*a33 *m2*n2 ) + u3*v1 *v3*( - 8*i*a33 *m2 *n1 *n3
3 3 3 3 3 3
- 16*a33 *m2 *n1 *n2*n3 - 16*a33 *m2 *n1*n2 *n3
3 3 4 2 3 3 5
+ 8*i*a33 *m2 *n2 *n3) + u3*v1*v3 *(16*i*a33 *m2 *n1
3 3 4 3 3 3 2
+ 24*a33 *m2 *n1 *n2 + 16*i*a33 *m2 *n1 *n2
3 3 2 3 3 3 5
+ 32*a33 *m2 *n1 *n2 + 8*a33 *m2 *n2 ) + u3*v1*v3*(
2 2 5 2 2 4 2
- 4*i*a33 *m2 *n1 *n2*n3 - 4*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
- 8*i*a33 *m2 *n1 *n2 *n3 - 8*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6 2
- 4*i*a33 *m2 *n1*n2 *n3 - 4*a33 *m2 *n2 *n3) + u3*v2 *v3*(
3 3 4 3 3 3
8*i*a33 *m2 *n1 *n3 + 16*a33 *m2 *n1 *n2*n3
3 3 3 3 3 4 2
+ 16*a33 *m2 *n1*n2 *n3 - 8*i*a33 *m2 *n2 *n3) + u3*v2*v3 *(
3 3 5 3 3 4 3 3 2 3
8*a33 *m2 *n1 - 16*i*a33 *m2 *n1 *n2 - 16*i*a33 *m2 *n1 *n2
3 3 4 2 2 6
- 8*a33 *m2 *n1*n2 ) + u3*v2*v3*(4*i*a33 *m2 *n1 *n3
2 2 5 2 2 4 2
+ 8*a33 *m2 *n1 *n2*n3 + 4*i*a33 *m2 *n1 *n2 *n3
2 2 3 3 2 2 2 4
+ 16*a33 *m2 *n1 *n2 *n3 - 4*i*a33 *m2 *n1 *n2 *n3
2 2 5 2 2 6 2
+ 8*a33 *m2 *n1*n2 *n3 - 4*i*a33 *m2 *n2 *n3) + u3*v3 *(
2 2 7 2 2 6 2 2 5 2
2*a33 *m2 *n1 + 2*i*a33 *m2 *n1 *n2 + 2*a33 *m2 *n1 *n2
2 2 4 3 2 2 3 4
+ 10*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1 *n2
2 2 2 5 2 2 6 2 2 7
+ 14*i*a33 *m2 *n1 *n2 - 2*a33 *m2 *n1*n2 + 6*i*a33 *m2 *n2 )}
2 2 6 4 2 2 4 6
FI=u1 *v1 *(2*a33*n1 + 6*a33*n1 *n2 + 6*a33*n1 *n2 + 2*a33*n2 )
2 2 6 4 2 2 4 6
+ u1 *v2 *(a33*n1 + 3*a33*n1 *n2 + 3*a33*n1 *n2 + a33*n2 )
2 2 6 4 2 2 4 6
+ u1 *v3 *(a33*n1 + 3*a33*n1 *n2 + 3*a33*n1 *n2 + a33*n2 )
6 4 2 2 4 6
+ u1*u3*v1*v3*(2*a33*n1 + 6*a33*n1 *n2 + 6*a33*n1 *n2 + 2*a33*n2 ) + u1
2 5 4 3 2
*v1 *v2*(4*a33*m2*n1 - 4*i*a33*m2*n1 *n2 + 8*a33*m2*n1 *n2
2 3 4 5
- 8*i*a33*m2*n1 *n2 + 4*a33*m2*n1*n2 - 4*i*a33*m2*n2 )
2 7 5 2 3 4 6
+ u1*v1 *( - n1 - 3*n1 *n2 - 3*n1 *n2 - n1*n2 )
6 4 3 2 5 7 3 5
+ u1*v1*v2*(n1 *n2 + 3*n1 *n2 + 3*n1 *n2 + n2 ) + u1*v2 *(2*a33*m2*n1
4 3 2 2 3
- 2*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2 - 4*i*a33*m2*n1 *n2
4 5
+ 2*a33*m2*n1*n2 - 2*i*a33*m2*n2 )
2 7 5 2 3 4 6 2 5
+ u1*v2 *( - n1 - 3*n1 *n2 - 3*n1 *n2 - n1*n2 ) + u1*v2*v3 *(2*a33*m2*n1
4 3 2 2 3
- 2*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2 - 4*i*a33*m2*n1 *n2
4 5
+ 2*a33*m2*n1*n2 - 2*i*a33*m2*n2 )
2 7 5 2 3 4 6
+ u1*v3 *( - n1 - 3*n1 *n2 - 3*n1 *n2 - n1*n2 )
2 2 6 4 2 2 4 6
+ u2 *v1 *(a33*n1 + 3*a33*n1 *n2 + 3*a33*n1 *n2 + a33*n2 )
2 2 6 4 2 2 4 6 3
+ u2 *v3 *(a33*n1 + 3*a33*n1 *n2 + 3*a33*n1 *n2 + a33*n2 ) + u2*v1 *(
5 4 3 2
- 2*a33*m2*n1 + 2*i*a33*m2*n1 *n2 - 4*a33*m2*n1 *n2
2 3 4 5
+ 4*i*a33*m2*n1 *n2 - 2*a33*m2*n1*n2 + 2*i*a33*m2*n2 )
2 6 4 3 2 5 7 2
+ u2*v1 *( - n1 *n2 - 3*n1 *n2 - 3*n1 *n2 - n2 ) + u2*v1*v3 *(
5 4 3 2
- 2*a33*m2*n1 + 2*i*a33*m2*n1 *n2 - 4*a33*m2*n1 *n2
2 3 4 5
+ 4*i*a33*m2*n1 *n2 - 2*a33*m2*n1*n2 + 2*i*a33*m2*n2 )
2 6 4 3 2 5 7
+ u2*v3 *( - n1 *n2 - 3*n1 *n2 - 3*n1 *n2 - n2 )
2 2 6 4 2 2 4 6 2
+ u3 *v3 *(a33*n1 + 3*a33*n1 *n2 + 3*a33*n1 *n2 + a33*n2 ) + u3*v1 *v3*(
5 4 3 2 2 3
2*i*a33*m2*n1 + 2*a33*m2*n1 *n2 + 4*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2
4 5
+ 2*i*a33*m2*n1*n2 + 2*a33*m2*n2 )
2 6 4 2 2 4 6
+ u3*v1 *( - n1 *n3 - 3*n1 *n2 *n3 - 3*n1 *n2 *n3 - n2 *n3) + u3*v1*v2*v3*(
5 4 3 2 2 3
2*a33*m2*n1 - 2*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2 - 4*i*a33*m2*n1 *n2
4 5 2 5
+ 2*a33*m2*n1*n2 - 2*i*a33*m2*n2 ) + u3*v2 *v3*(2*i*a33*m2*n1
4 3 2 2 3
+ 2*a33*m2*n1 *n2 + 4*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2
4 5
+ 2*i*a33*m2*n1*n2 + 2*a33*m2*n2 )
2 6 4 2 2 4 6
+ u3*v2 *( - n1 *n3 - 3*n1 *n2 *n3 - 3*n1 *n2 *n3 - n2 *n3)
6 4 3 2 5 7 3 5
+ u3*v2*v3*(n1 *n2 + 3*n1 *n2 + 3*n1 *n2 + n2 ) + u3*v3 *(2*i*a33*m2*n1
4 3 2 2 3
+ 2*a33*m2*n1 *n2 + 4*i*a33*m2*n1 *n2 + 4*a33*m2*n1 *n2
4 5
+ 2*i*a33*m2*n1*n2 + 2*a33*m2*n2 )
2 6 4 2 2 4 6 3 6
+ u3*v3 *( - n1 *n3 - 3*n1 *n2 *n3 - 3*n1 *n2 *n3 - n2 *n3) + v1 *(i*m2*n1
5 4 2 3 3 2 4 5
+ 2*m2*n1 *n2 + i*m2*n1 *n2 + 4*m2*n1 *n2 - i*m2*n1 *n2 + 2*m2*n1*n2
6 2 6 5 4 2
- i*m2*n2 ) + v1 *v2*( - m2*n1 + 2*i*m2*n1 *n2 - m2*n1 *n2
3 3 2 4 5 6 2
+ 4*i*m2*n1 *n2 + m2*n1 *n2 + 2*i*m2*n1*n2 + m2*n2 ) + v1 *v3*(
5 4 3 2 2 3
2*i*m2*n1 *n3 + 2*m2*n1 *n2*n3 + 4*i*m2*n1 *n2 *n3 + 4*m2*n1 *n2 *n3
4 5 2 6 5
+ 2*i*m2*n1*n2 *n3 + 2*m2*n2 *n3) + v1*v2 *(i*m2*n1 + 2*m2*n1 *n2
4 2 3 3 2 4 5 6
+ i*m2*n1 *n2 + 4*m2*n1 *n2 - i*m2*n1 *n2 + 2*m2*n1*n2 - i*m2*n2 ) +
2 6 5 4 2 3 3 2 4
v1*v3 *(i*m2*n1 + 2*m2*n1 *n2 + i*m2*n1 *n2 + 4*m2*n1 *n2 - i*m2*n1 *n2
5 6 3 6 5
+ 2*m2*n1*n2 - i*m2*n2 ) + v2 *( - m2*n1 + 2*i*m2*n1 *n2
4 2 3 3 2 4 5 6
- m2*n1 *n2 + 4*i*m2*n1 *n2 + m2*n1 *n2 + 2*i*m2*n1*n2 + m2*n2 ) +
2 5 4 3 2 2 3
v2 *v3*(2*i*m2*n1 *n3 + 2*m2*n1 *n2*n3 + 4*i*m2*n1 *n2 *n3 + 4*m2*n1 *n2 *n3
4 5 2 6
+ 2*i*m2*n1*n2 *n3 + 2*m2*n2 *n3) + v2*v3 *( - m2*n1
5 4 2 3 3 2 4
+ 2*i*m2*n1 *n2 - m2*n1 *n2 + 4*i*m2*n1 *n2 + m2*n1 *n2
5 6 3 5 4
+ 2*i*m2*n1*n2 + m2*n2 ) + v3 *(2*i*m2*n1 *n3 + 2*m2*n1 *n2*n3
3 2 2 3 4 5
+ 4*i*m2*n1 *n2 *n3 + 4*m2*n1 *n2 *n3 + 2*i*m2*n1*n2 *n3 + 2*m2*n2 *n3)
Stop of a subroutine.
Number of garbage collections exceeds max_gc_fac.
The factorization crashed!
which the program can not factorize further.
{HAM,FI} = {4,
- n1 + i*n2,
n1 - i*n2,
n1 - i*n2,
n1 + i*n2,
n1 + i*n2,
u1*v1 + u2*v2 + u3*v3,
2 2
u1*u3*v2*( - a33 *n1 - i*a33 *n2)
- a33*n1*n3 - i*a33*n2*n3
+ u1*v2*----------------------------
2
2 2
+ u2*u3*v1*( - a33 *n1 - i*a33 *n2)
- a33*n1*n3 - i*a33*n2*n3
+ u2*v1*----------------------------
2
2
a33*n1 + i*a33*n1*n2 2 2
+ u2*v3*----------------------- + u3*v1 *a33 *m2
2
2
a33*n1*n2 + i*a33*n2 2 2
+ u3*v1*----------------------- - u3*v2 *a33 *m2
2
2 2
a33*n1 + i*a33*n1*n2 v1 *a33*m2*n3
+ u3*v2*----------------------- + ---------------
2 2
2
- v1*v3*a33*m2*n1 n1*n2*n3 + i*n2 *n3
+ -------------------- + v1*---------------------
2 4
2
- v2 *a33*m2*n3 i*v2*v3*a33*m2*n1
+ ------------------ + -------------------
2 2
2 2
- n1 *n2 - i*n1*n2
+ v3*----------------------}
4
2 7 6 5 2 4 3
FI=u1 *( - i*a33*n1 + a33*n1 *n2 - 3*i*a33*n1 *n2 + 3*a33*n1 *n2
3 4 2 5 6 7
- 3*i*a33*n1 *n2 + 3*a33*n1 *n2 - i*a33*n1*n2 + a33*n2 ) + u1*v2*(
6 4 2 2 4
- 2*i*a33*m2*n1 - 6*i*a33*m2*n1 *n2 - 6*i*a33*m2*n1 *n2
6 8 7 6 2 5 3
- 2*i*a33*m2*n2 ) + u1*(i*n1 - n1 *n2 + 3*i*n1 *n2 - 3*n1 *n2
4 4 3 5 2 6 7 2 7
+ 3*i*n1 *n2 - 3*n1 *n2 + i*n1 *n2 - n1*n2 ) + u2 *( - i*a33*n1
6 5 2 4 3 3 4
+ a33*n1 *n2 - 3*i*a33*n1 *n2 + 3*a33*n1 *n2 - 3*i*a33*n1 *n2
2 5 6 7
+ 3*a33*n1 *n2 - i*a33*n1*n2 + a33*n2 ) + u2*v1
6 4 2 2 4 6
*(2*i*a33*m2*n1 + 6*i*a33*m2*n1 *n2 + 6*i*a33*m2*n1 *n2 + 2*i*a33*m2*n2 )
7 6 2 5 3 4 4 3 5 2 6
+ u2*(i*n1 *n2 - n1 *n2 + 3*i*n1 *n2 - 3*n1 *n2 + 3*i*n1 *n2 - 3*n1 *n2
7 8
+ i*n1*n2 - n2 )
6 4 2 2 4 6
+ u3*v3*(2*a33*m2*n1 + 6*a33*m2*n1 *n2 + 6*a33*m2*n1 *n2 + 2*a33*m2*n2 )
7 6 5 2 4 3 3 4
+ u3*(i*n1 *n3 - n1 *n2*n3 + 3*i*n1 *n2 *n3 - 3*n1 *n2 *n3 + 3*i*n1 *n2 *n3
2 5 6 7 7 6
- 3*n1 *n2 *n3 + i*n1*n2 *n3 - n2 *n3) + v1*(m2*n1 - i*m2*n1 *n2
5 2 4 3 3 4 2 5
+ 3*m2*n1 *n2 - 3*i*m2*n1 *n2 + 3*m2*n1 *n2 - 3*i*m2*n1 *n2
6 7 7 6 5 2
+ m2*n1*n2 - i*m2*n2 ) + v2*(i*m2*n1 + m2*n1 *n2 + 3*i*m2*n1 *n2
4 3 3 4 2 5 6 7
+ 3*m2*n1 *n2 + 3*i*m2*n1 *n2 + 3*m2*n1 *n2 + i*m2*n1*n2 + m2*n2 )
6 4 2 2 4 6
+ v3*(2*m2*n1 *n3 + 6*m2*n1 *n2 *n3 + 6*m2*n1 *n2 *n3 + 2*m2*n2 *n3)
= a product of the elements of: { - 2*i,
n1 - i*n2,
n1 - i*n2,
n1 - i*n2,
n1 + i*n2,
n1 + i*n2,
n1 + i*n2,
2
2 a33*n1 + i*a33*n2 - n1 - i*n1*n2
u1 *------------------- + u1*v2*a33*m2 + u1*------------------
2 2
2
2 a33*n1 + i*a33*n2 - n1*n2 - i*n2
+ u2 *------------------- - u2*v1*a33*m2 + u2*------------------
2 2
- n1*n3 - i*n2*n3 i*m2*n1 + m2*n2
+ i*u3*v3*a33*m2 + u3*-------------------- + v1*-----------------
2 2
- m2*n1 + i*m2*n2
+ v2*-------------------- + i*v3*m2*n3}
2
{HAM,FI} = 0
And again in machine readable form:
HAM=u1*n1 + u2*n2 + u3**2*a33 + u3*n3 + i*v1*m2 + v2*m2$
FI=u1**3*(a33**2*n1**2 + i*a33**2*n1*n2) + u1**2*u2*(a33**2*n1*n2 + i*a33**2*n2
**2) + u1**2*u3**2*(a33**3*n1 + i*a33**3*n2) + u1**2*u3*(a33**2*n1*n3 + i*a33**2
*n2*n3) + u1**2*v1*(i*a33**2*m2*n1 - 3*a33**2*m2*n2) + u1**2*v2*(3*a33**2*m2*n1
+ i*a33**2*m2*n2) + u1**2*( - a33*n1**3 - a33*n1*n2**2 - a33*n1*n3**2 - i*a33*n2
*n3**2) + u1*u2**2*(a33**2*n1**2 + i*a33**2*n1*n2) + u1*u2*v1*( - 3*a33**2*m2*n1
- i*a33**2*m2*n2) + u1*u2*( - 2*a33*n1**2*n2 - 2*i*a33*n1*n2**2) + 2*u1*u3**2*
v2*a33**3*m2 + u1*u3**2*( - a33**2*n1**2 - i*a33**2*n1*n2) + 2*u1*u3*v2*a33**2*
m2*n3 + u1*u3*v3*(2*i*a33**2*m2*n1 - 2*a33**2*m2*n2) + u1*u3*( - 2*a33*n1**2*n3
- 2*i*a33*n1*n2*n3) + 2*u1*v1**2*a33**2*m2**2 + 2*i*u1*v1*v2*a33**2*m2**2 + 4*u1
*v1*a33*m2*n1*n2 + 2*u1*v2**2*a33**2*m2**2 + u1*v2*( - 2*a33*m2*n1**2 + 2*i*a33*
m2*n1*n2 - 2*a33*m2*n3**2) + 2*i*u1*v3*a33*m2*n1*n3 + u1*( - i*n1**3*n2 + n1**2*
n2**2 + 2*n1**2*n3**2 + 2*i*n1*n2*n3**2) + u2**3*(a33**2*n1*n2 + i*a33**2*n2**2)
+ u2**2*u3**2*(a33**3*n1 + i*a33**3*n2) + u2**2*u3*(a33**2*n1*n3 + i*a33**2*n2*
n3) + u2**2*v1*(i*a33**2*m2*n1 - 3*a33**2*m2*n2) + u2**2*(i*a33*n1**2*n2 - 2*a33
*n1*n2**2 - a33*n1*n3**2 - i*a33*n2**3 - i*a33*n2*n3**2) - 2*u2*u3**2*v1*a33**3*
m2 + u2*u3**2*( - a33**2*n1*n2 - i*a33**2*n2**2) - 2*u2*u3*v1*a33**2*m2*n3 + u2*
u3*v3*( - a33**2*m2*n1 + i*a33**2*m2*n2) + u2*u3*( - 2*a33*n1*n2*n3 - 2*i*a33*n2
**2*n3) - 2*i*u2*v1**2*a33**2*m2**2 + u2*v1*( - 2*i*a33*m2*n1*n2 + 2*a33*m2*n2**
2 + 2*a33*m2*n3**2) + 2*i*u2*v3*a33*m2*n2*n3 + u2*( - i*n1**2*n2**2 + n1*n2**3 +
2*n1*n2*n3**2 + 2*i*n2**2*n3**2) + 2*i*u3**3*v3*a33**3*m2 + u3**3*( - a33**2*n1
*n3 - i*a33**2*n2*n3) + u3**2*v1*(i*a33**2*m2*n1 + a33**2*m2*n2) + u3**2*v2*( -
a33**2*m2*n1 + i*a33**2*m2*n2) + 4*i*u3**2*v3*a33**2*m2*n3 + 2*u3*v1*a33*m2*n2*
n3 + 2*i*u3*v2*v3*a33**2*m2**2 - 2*u3*v2*a33*m2*n1*n3 + u3*( - i*n1**2*n2*n3 +
n1*n2**2*n3 + 2*n1*n3**3 + 2*i*n2*n3**3) - 2*v1*v3*a33*m2**2*n3 + v1*( - m2*n1**
2*n2 + i*m2*n1*n2**2 - 2*m2*n2*n3**2) + 2*i*v2*v3*a33*m2**2*n3 + v2*( - i*m2*n1
**2*n2 - m2*n1*n2**2 + 2*m2*n1*n3**2) + v3**2*(a33*m2**2*n1 - i*a33*m2**2*n2) +
v3*( - 2*m2*n1*n2*n3 - 2*i*m2*n3**3)$
FI=u1**4*( - i*a33**3*n1**7 + a33**3*n1**6*n2 - 3*i*a33**3*n1**5*n2**2 + 3*a33**
3*n1**4*n2**3 - 3*i*a33**3*n1**3*n2**4 + 3*a33**3*n1**2*n2**5 - i*a33**3*n1*n2**
6 + a33**3*n2**7) + u1**3*v2*( - 4*i*a33**3*m2*n1**6 - 12*i*a33**3*m2*n1**4*n2**
2 - 12*i*a33**3*m2*n1**2*n2**4 - 4*i*a33**3*m2*n2**6) + u1**3*(2*i*a33**2*n1**8
- 2*a33**2*n1**7*n2 + 6*i*a33**2*n1**6*n2**2 - 6*a33**2*n1**5*n2**3 + 6*i*a33**2
*n1**4*n2**4 - 6*a33**2*n1**3*n2**5 + 2*i*a33**2*n1**2*n2**6 - 2*a33**2*n1*n2**7
) + u1**2*u2**2*( - 2*i*a33**3*n1**7 + 2*a33**3*n1**6*n2 - 6*i*a33**3*n1**5*n2**
2 + 6*a33**3*n1**4*n2**3 - 6*i*a33**3*n1**3*n2**4 + 6*a33**3*n1**2*n2**5 - 2*i*
a33**3*n1*n2**6 + 2*a33**3*n2**7) + u1**2*u2*v1*(8*i*a33**3*m2*n1**6 + 24*i*a33
**3*m2*n1**4*n2**2 + 24*i*a33**3*m2*n1**2*n2**4 + 8*i*a33**3*m2*n2**6) + u1**2*
u2*(2*i*a33**2*n1**7*n2 - 2*a33**2*n1**6*n2**2 + 6*i*a33**2*n1**5*n2**3 - 6*a33
**2*n1**4*n2**4 + 6*i*a33**2*n1**3*n2**5 - 6*a33**2*n1**2*n2**6 + 2*i*a33**2*n1*
n2**7 - 2*a33**2*n2**8) + u1**2*u3*v3*(4*a33**3*m2*n1**6 + 12*a33**3*m2*n1**4*n2
**2 + 12*a33**3*m2*n1**2*n2**4 + 4*a33**3*m2*n2**6) + u1**2*u3*(2*i*a33**2*n1**7
*n3 - 2*a33**2*n1**6*n2*n3 + 6*i*a33**2*n1**5*n2**2*n3 - 6*a33**2*n1**4*n2**3*n3
+ 6*i*a33**2*n1**3*n2**4*n3 - 6*a33**2*n1**2*n2**5*n3 + 2*i*a33**2*n1*n2**6*n3
- 2*a33**2*n2**7*n3) + u1**2*v1*(2*a33**2*m2*n1**7 - 6*i*a33**2*m2*n1**6*n2 + 6*
a33**2*m2*n1**5*n2**2 - 18*i*a33**2*m2*n1**4*n2**3 + 6*a33**2*m2*n1**3*n2**4 -
18*i*a33**2*m2*n1**2*n2**5 + 2*a33**2*m2*n1*n2**6 - 6*i*a33**2*m2*n2**7) + u1**2
*v2*(6*i*a33**2*m2*n1**7 + 2*a33**2*m2*n1**6*n2 + 18*i*a33**2*m2*n1**5*n2**2 + 6
*a33**2*m2*n1**4*n2**3 + 18*i*a33**2*m2*n1**3*n2**4 + 6*a33**2*m2*n1**2*n2**5 +
6*i*a33**2*m2*n1*n2**6 + 2*a33**2*m2*n2**7) + u1**2*v3**2*(4*i*a33**3*m2**2*n1**
5 + 4*a33**3*m2**2*n1**4*n2 + 8*i*a33**3*m2**2*n1**3*n2**2 + 8*a33**3*m2**2*n1**
2*n2**3 + 4*i*a33**3*m2**2*n1*n2**4 + 4*a33**3*m2**2*n2**5) + u1**2*v3*(4*a33**2
*m2*n1**6*n3 + 12*a33**2*m2*n1**4*n2**2*n3 + 12*a33**2*m2*n1**2*n2**4*n3 + 4*a33
**2*m2*n2**6*n3) + u1**2*( - i*a33*n1**9 - 3*i*a33*n1**7*n2**2 - 2*i*a33*n1**7*
n3**2 - a33*n1**6*n2**3 + 2*a33*n1**6*n2*n3**2 - 3*i*a33*n1**5*n2**4 - 6*i*a33*
n1**5*n2**2*n3**2 - 3*a33*n1**4*n2**5 + 6*a33*n1**4*n2**3*n3**2 - i*a33*n1**3*n2
**6 - 6*i*a33*n1**3*n2**4*n3**2 - 3*a33*n1**2*n2**7 + 6*a33*n1**2*n2**5*n3**2 -
2*i*a33*n1*n2**6*n3**2 - a33*n2**9 + 2*a33*n2**7*n3**2) + u1*u2**2*(2*i*a33**2*
n1**8 - 2*a33**2*n1**7*n2 + 6*i*a33**2*n1**6*n2**2 - 6*a33**2*n1**5*n2**3 + 6*i*
a33**2*n1**4*n2**4 - 6*a33**2*n1**3*n2**5 + 2*i*a33**2*n1**2*n2**6 - 2*a33**2*n1
*n2**7) + u1*u2*u3*v3*(4*i*a33**3*m2*n1**6 + 12*i*a33**3*m2*n1**4*n2**2 + 12*i*
a33**3*m2*n1**2*n2**4 + 4*i*a33**3*m2*n2**6) + u1*u2*v1*( - 6*i*a33**2*m2*n1**7
- 2*a33**2*m2*n1**6*n2 - 18*i*a33**2*m2*n1**5*n2**2 - 6*a33**2*m2*n1**4*n2**3 -
18*i*a33**2*m2*n1**3*n2**4 - 6*a33**2*m2*n1**2*n2**5 - 6*i*a33**2*m2*n1*n2**6 -
2*a33**2*m2*n2**7) + u1*u2*( - 2*i*a33*n1**8*n2 + 2*a33*n1**7*n2**2 - 6*i*a33*n1
**6*n2**3 + 6*a33*n1**5*n2**4 - 6*i*a33*n1**4*n2**5 + 6*a33*n1**3*n2**6 - 2*i*
a33*n1**2*n2**7 + 2*a33*n1*n2**8) + u1*u3*v2*v3*(8*a33**3*m2**2*n1**5 - 8*i*a33
**3*m2**2*n1**4*n2 + 16*a33**3*m2**2*n1**3*n2**2 - 16*i*a33**3*m2**2*n1**2*n2**3
+ 8*a33**3*m2**2*n1*n2**4 - 8*i*a33**3*m2**2*n2**5) + u1*u3*v2*(4*i*a33**2*m2*
n1**6*n3 + 12*i*a33**2*m2*n1**4*n2**2*n3 + 12*i*a33**2*m2*n1**2*n2**4*n3 + 4*i*
a33**2*m2*n2**6*n3) + u1*u3*v3*( - 4*a33**2*m2*n1**7 - 4*i*a33**2*m2*n1**6*n2 -
12*a33**2*m2*n1**5*n2**2 - 12*i*a33**2*m2*n1**4*n2**3 - 12*a33**2*m2*n1**3*n2**4
- 12*i*a33**2*m2*n1**2*n2**5 - 4*a33**2*m2*n1*n2**6 - 4*i*a33**2*m2*n2**7) + u1
*u3*( - 2*i*a33*n1**8*n3 + 2*a33*n1**7*n2*n3 - 6*i*a33*n1**6*n2**2*n3 + 6*a33*n1
**5*n2**3*n3 - 6*i*a33*n1**4*n2**4*n3 + 6*a33*n1**3*n2**5*n3 - 2*i*a33*n1**2*n2
**6*n3 + 2*a33*n1*n2**7*n3) + u1*v1**2*v2*(16*i*a33**3*m2**3*n1**4 + 32*a33**3*
m2**3*n1**3*n2 + 32*a33**3*m2**3*n1*n2**3 - 16*i*a33**3*m2**3*n2**4) + u1*v1**2*
(4*a33**2*m2**2*n1**5*n2 - 4*i*a33**2*m2**2*n1**4*n2**2 + 8*a33**2*m2**2*n1**3*
n2**3 - 8*i*a33**2*m2**2*n1**2*n2**4 + 4*a33**2*m2**2*n1*n2**5 - 4*i*a33**2*m2**
2*n2**6) + u1*v1*v2*(4*a33**2*m2**2*n1**6 - 4*i*a33**2*m2**2*n1**5*n2 + 8*a33**2
*m2**2*n1**4*n2**2 - 8*i*a33**2*m2**2*n1**3*n2**3 + 4*a33**2*m2**2*n1**2*n2**4 -
4*i*a33**2*m2**2*n1*n2**5) + u1*v1*( - 2*a33*m2*n1**8 + 4*i*a33*m2*n1**7*n2 - 4
*a33*m2*n1**6*n2**2 + 12*i*a33*m2*n1**5*n2**3 + 12*i*a33*m2*n1**3*n2**5 + 4*a33*
m2*n1**2*n2**6 + 4*i*a33*m2*n1*n2**7 + 2*a33*m2*n2**8) + u1*v2**3*(8*i*a33**3*m2
**3*n1**4 + 16*a33**3*m2**3*n1**3*n2 + 16*a33**3*m2**3*n1*n2**3 - 8*i*a33**3*m2
**3*n2**4) + u1*v2**2*(4*a33**2*m2**2*n1**5*n2 - 4*i*a33**2*m2**2*n1**4*n2**2 +
8*a33**2*m2**2*n1**3*n2**3 - 8*i*a33**2*m2**2*n1**2*n2**4 + 4*a33**2*m2**2*n1*n2
**5 - 4*i*a33**2*m2**2*n2**6) + u1*v2*v3**2*(8*i*a33**3*m2**3*n1**4 + 16*a33**3*
m2**3*n1**3*n2 + 16*a33**3*m2**3*n1*n2**3 - 8*i*a33**3*m2**3*n2**4) + u1*v2*v3*(
8*a33**2*m2**2*n1**5*n3 - 8*i*a33**2*m2**2*n1**4*n2*n3 + 16*a33**2*m2**2*n1**3*
n2**2*n3 - 16*i*a33**2*m2**2*n1**2*n2**3*n3 + 8*a33**2*m2**2*n1*n2**4*n3 - 8*i*
a33**2*m2**2*n2**5*n3) + u1*v2*( - 2*i*a33*m2*n1**8 - 4*a33*m2*n1**7*n2 - 4*i*
a33*m2*n1**6*n2**2 - 4*i*a33*m2*n1**6*n3**2 - 12*a33*m2*n1**5*n2**3 - 12*i*a33*
m2*n1**4*n2**2*n3**2 - 12*a33*m2*n1**3*n2**5 + 4*i*a33*m2*n1**2*n2**6 - 12*i*a33
*m2*n1**2*n2**4*n3**2 - 4*a33*m2*n1*n2**7 + 2*i*a33*m2*n2**8 - 4*i*a33*m2*n2**6*
n3**2) + u1*v3**2*( - 4*i*a33**2*m2**2*n1**6 - 4*a33**2*m2**2*n1**5*n2 - 8*i*a33
**2*m2**2*n1**4*n2**2 - 8*a33**2*m2**2*n1**3*n2**3 - 4*i*a33**2*m2**2*n1**2*n2**
4 - 4*a33**2*m2**2*n1*n2**5) + u1*v3*( - 4*a33*m2*n1**7*n3 - 12*a33*m2*n1**5*n2
**2*n3 - 12*a33*m2*n1**3*n2**4*n3 - 4*a33*m2*n1*n2**6*n3) + u1*(n1**9*n2 + 3*i*
n1**8*n3**2 + 4*n1**7*n2**3 - 3*n1**7*n2*n3**2 + 9*i*n1**6*n2**2*n3**2 + 6*n1**5
*n2**5 - 9*n1**5*n2**3*n3**2 + 9*i*n1**4*n2**4*n3**2 + 4*n1**3*n2**7 - 9*n1**3*
n2**5*n3**2 + 3*i*n1**2*n2**6*n3**2 + n1*n2**9 - 3*n1*n2**7*n3**2) + u2**4*( - i
*a33**3*n1**7 + a33**3*n1**6*n2 - 3*i*a33**3*n1**5*n2**2 + 3*a33**3*n1**4*n2**3
- 3*i*a33**3*n1**3*n2**4 + 3*a33**3*n1**2*n2**5 - i*a33**3*n1*n2**6 + a33**3*n2
**7) + u2**3*v1*(4*i*a33**3*m2*n1**6 + 12*i*a33**3*m2*n1**4*n2**2 + 12*i*a33**3*
m2*n1**2*n2**4 + 4*i*a33**3*m2*n2**6) + u2**3*(2*i*a33**2*n1**7*n2 - 2*a33**2*n1
**6*n2**2 + 6*i*a33**2*n1**5*n2**3 - 6*a33**2*n1**4*n2**4 + 6*i*a33**2*n1**3*n2
**5 - 6*a33**2*n1**2*n2**6 + 2*i*a33**2*n1*n2**7 - 2*a33**2*n2**8) + u2**2*u3*v3
*(4*a33**3*m2*n1**6 + 12*a33**3*m2*n1**4*n2**2 + 12*a33**3*m2*n1**2*n2**4 + 4*
a33**3*m2*n2**6) + u2**2*u3*(2*i*a33**2*n1**7*n3 - 2*a33**2*n1**6*n2*n3 + 6*i*
a33**2*n1**5*n2**2*n3 - 6*a33**2*n1**4*n2**3*n3 + 6*i*a33**2*n1**3*n2**4*n3 - 6*
a33**2*n1**2*n2**5*n3 + 2*i*a33**2*n1*n2**6*n3 - 2*a33**2*n2**7*n3) + u2**2*v1*(
2*a33**2*m2*n1**7 - 6*i*a33**2*m2*n1**6*n2 + 6*a33**2*m2*n1**5*n2**2 - 18*i*a33
**2*m2*n1**4*n2**3 + 6*a33**2*m2*n1**3*n2**4 - 18*i*a33**2*m2*n1**2*n2**5 + 2*
a33**2*m2*n1*n2**6 - 6*i*a33**2*m2*n2**7) + u2**2*v3**2*(4*i*a33**3*m2**2*n1**5
+ 4*a33**3*m2**2*n1**4*n2 + 8*i*a33**3*m2**2*n1**3*n2**2 + 8*a33**3*m2**2*n1**2*
n2**3 + 4*i*a33**3*m2**2*n1*n2**4 + 4*a33**3*m2**2*n2**5) + u2**2*v3*(4*a33**2*
m2*n1**6*n3 + 12*a33**2*m2*n1**4*n2**2*n3 + 12*a33**2*m2*n1**2*n2**4*n3 + 4*a33
**2*m2*n2**6*n3) + u2**2*( - a33*n1**8*n2 - i*a33*n1**7*n2**2 - 2*i*a33*n1**7*n3
**2 - 3*a33*n1**6*n2**3 + 2*a33*n1**6*n2*n3**2 - 3*i*a33*n1**5*n2**4 - 6*i*a33*
n1**5*n2**2*n3**2 - 3*a33*n1**4*n2**5 + 6*a33*n1**4*n2**3*n3**2 - 3*i*a33*n1**3*
n2**6 - 6*i*a33*n1**3*n2**4*n3**2 - a33*n1**2*n2**7 + 6*a33*n1**2*n2**5*n3**2 -
i*a33*n1*n2**8 - 2*i*a33*n1*n2**6*n3**2 + 2*a33*n2**7*n3**2) + u2*u3*v1*v3*( - 8
*a33**3*m2**2*n1**5 + 8*i*a33**3*m2**2*n1**4*n2 - 16*a33**3*m2**2*n1**3*n2**2 +
16*i*a33**3*m2**2*n1**2*n2**3 - 8*a33**3*m2**2*n1*n2**4 + 8*i*a33**3*m2**2*n2**5
) + u2*u3*v1*( - 4*i*a33**2*m2*n1**6*n3 - 12*i*a33**2*m2*n1**4*n2**2*n3 - 12*i*
a33**2*m2*n1**2*n2**4*n3 - 4*i*a33**2*m2*n2**6*n3) + u2*u3*v3*( - 2*i*a33**2*m2*
n1**7 - 6*a33**2*m2*n1**6*n2 - 6*i*a33**2*m2*n1**5*n2**2 - 18*a33**2*m2*n1**4*n2
**3 - 6*i*a33**2*m2*n1**3*n2**4 - 18*a33**2*m2*n1**2*n2**5 - 2*i*a33**2*m2*n1*n2
**6 - 6*a33**2*m2*n2**7) + u2*u3*( - 2*i*a33*n1**7*n2*n3 + 2*a33*n1**6*n2**2*n3
- 6*i*a33*n1**5*n2**3*n3 + 6*a33*n1**4*n2**4*n3 - 6*i*a33*n1**3*n2**5*n3 + 6*a33
*n1**2*n2**6*n3 - 2*i*a33*n1*n2**7*n3 + 2*a33*n2**8*n3) + u2*v1**3*( - 8*i*a33**
3*m2**3*n1**4 - 16*a33**3*m2**3*n1**3*n2 - 16*a33**3*m2**3*n1*n2**3 + 8*i*a33**3
*m2**3*n2**4) + u2*v1**2*( - 4*a33**2*m2**2*n1**6 + 4*i*a33**2*m2**2*n1**5*n2 -
8*a33**2*m2**2*n1**4*n2**2 + 8*i*a33**2*m2**2*n1**3*n2**3 - 4*a33**2*m2**2*n1**2
*n2**4 + 4*i*a33**2*m2**2*n1*n2**5) + u2*v1*v3**2*( - 8*i*a33**3*m2**3*n1**4 -
16*a33**3*m2**3*n1**3*n2 - 16*a33**3*m2**3*n1*n2**3 + 8*i*a33**3*m2**3*n2**4) +
u2*v1*v3*( - 8*a33**2*m2**2*n1**5*n3 + 8*i*a33**2*m2**2*n1**4*n2*n3 - 16*a33**2*
m2**2*n1**3*n2**2*n3 + 16*i*a33**2*m2**2*n1**2*n2**3*n3 - 8*a33**2*m2**2*n1*n2**
4*n3 + 8*i*a33**2*m2**2*n2**5*n3) + u2*v1*(4*i*a33*m2*n1**6*n3**2 + 12*i*a33*m2*
n1**4*n2**2*n3**2 + 12*i*a33*m2*n1**2*n2**4*n3**2 + 4*i*a33*m2*n2**6*n3**2) + u2
*v3**2*( - 4*i*a33**2*m2**2*n1**5*n2 - 4*a33**2*m2**2*n1**4*n2**2 - 8*i*a33**2*
m2**2*n1**3*n2**3 - 8*a33**2*m2**2*n1**2*n2**4 - 4*i*a33**2*m2**2*n1*n2**5 - 4*
a33**2*m2**2*n2**6) + u2*v3*( - 4*a33*m2*n1**6*n2*n3 - 12*a33*m2*n1**4*n2**3*n3
- 12*a33*m2*n1**2*n2**5*n3 - 4*a33*m2*n2**7*n3) + u2*(n1**8*n2**2 + 3*i*n1**7*n2
*n3**2 + 4*n1**6*n2**4 - 3*n1**6*n2**2*n3**2 + 9*i*n1**5*n2**3*n3**2 + 6*n1**4*
n2**6 - 9*n1**4*n2**4*n3**2 + 9*i*n1**3*n2**5*n3**2 + 4*n1**2*n2**8 - 9*n1**2*n2
**6*n3**2 + 3*i*n1*n2**7*n3**2 + n2**10 - 3*n2**8*n3**2) + u3**2*v3**2*(8*i*a33
**3*m2**2*n1**5 + 8*a33**3*m2**2*n1**4*n2 + 16*i*a33**3*m2**2*n1**3*n2**2 + 16*
a33**3*m2**2*n1**2*n2**3 + 8*i*a33**3*m2**2*n1*n2**4 + 8*a33**3*m2**2*n2**5) +
u3**2*v3*( - 4*a33**2*m2*n1**6*n3 - 12*a33**2*m2*n1**4*n2**2*n3 - 12*a33**2*m2*
n1**2*n2**4*n3 - 4*a33**2*m2*n2**6*n3) + u3*v1**2*v3*( - 8*a33**3*m2**3*n1**4 +
16*i*a33**3*m2**3*n1**3*n2 + 16*i*a33**3*m2**3*n1*n2**3 + 8*a33**3*m2**3*n2**4)
+ u3*v1**2*( - 4*i*a33**2*m2**2*n1**5*n3 - 4*a33**2*m2**2*n1**4*n2*n3 - 8*i*a33
**2*m2**2*n1**3*n2**2*n3 - 8*a33**2*m2**2*n1**2*n2**3*n3 - 4*i*a33**2*m2**2*n1*
n2**4*n3 - 4*a33**2*m2**2*n2**5*n3) + u3*v1*v2*v3*(8*i*a33**3*m2**3*n1**4 + 16*
a33**3*m2**3*n1**3*n2 + 16*a33**3*m2**3*n1*n2**3 - 8*i*a33**3*m2**3*n2**4) + u3*
v1*v3*(8*i*a33**2*m2**2*n1**6 + 16*a33**2*m2**2*n1**5*n2 + 8*i*a33**2*m2**2*n1**
4*n2**2 + 32*a33**2*m2**2*n1**3*n2**3 - 8*i*a33**2*m2**2*n1**2*n2**4 + 16*a33**2
*m2**2*n1*n2**5 - 8*i*a33**2*m2**2*n2**6) + u3*v1*( - 2*a33*m2*n1**7*n3 + 2*i*
a33*m2*n1**6*n2*n3 - 6*a33*m2*n1**5*n2**2*n3 + 6*i*a33*m2*n1**4*n2**3*n3 - 6*a33
*m2*n1**3*n2**4*n3 + 6*i*a33*m2*n1**2*n2**5*n3 - 2*a33*m2*n1*n2**6*n3 + 2*i*a33*
m2*n2**7*n3) + u3*v2**2*v3*( - 8*a33**3*m2**3*n1**4 + 16*i*a33**3*m2**3*n1**3*n2
+ 16*i*a33**3*m2**3*n1*n2**3 + 8*a33**3*m2**3*n2**4) + u3*v2**2*( - 4*i*a33**2*
m2**2*n1**5*n3 - 4*a33**2*m2**2*n1**4*n2*n3 - 8*i*a33**2*m2**2*n1**3*n2**2*n3 -
8*a33**2*m2**2*n1**2*n2**3*n3 - 4*i*a33**2*m2**2*n1*n2**4*n3 - 4*a33**2*m2**2*n2
**5*n3) + u3*v2*v3*( - 4*a33**2*m2**2*n1**6 + 12*i*a33**2*m2**2*n1**5*n2 + 24*i*
a33**2*m2**2*n1**3*n2**3 + 12*a33**2*m2**2*n1**2*n2**4 + 12*i*a33**2*m2**2*n1*n2
**5 + 8*a33**2*m2**2*n2**6) + u3*v2*( - 2*i*a33*m2*n1**7*n3 - 2*a33*m2*n1**6*n2*
n3 - 6*i*a33*m2*n1**5*n2**2*n3 - 6*a33*m2*n1**4*n2**3*n3 - 6*i*a33*m2*n1**3*n2**
4*n3 - 6*a33*m2*n1**2*n2**5*n3 - 2*i*a33*m2*n1*n2**6*n3 - 2*a33*m2*n2**7*n3) +
u3*v3**3*( - 8*a33**3*m2**3*n1**4 + 16*i*a33**3*m2**3*n1**3*n2 + 16*i*a33**3*m2
**3*n1*n2**3 + 8*a33**3*m2**3*n2**4) + u3*v3**2*(4*i*a33**2*m2**2*n1**5*n3 + 4*
a33**2*m2**2*n1**4*n2*n3 + 8*i*a33**2*m2**2*n1**3*n2**2*n3 + 8*a33**2*m2**2*n1**
2*n2**3*n3 + 4*i*a33**2*m2**2*n1*n2**4*n3 + 4*a33**2*m2**2*n2**5*n3) + u3*(n1**8
*n2*n3 + 3*i*n1**7*n3**3 + 4*n1**6*n2**3*n3 - 3*n1**6*n2*n3**3 + 9*i*n1**5*n2**2
*n3**3 + 6*n1**4*n2**5*n3 - 9*n1**4*n2**3*n3**3 + 9*i*n1**3*n2**4*n3**3 + 4*n1**
2*n2**7*n3 - 9*n1**2*n2**5*n3**3 + 3*i*n1*n2**6*n3**3 + n2**9*n3 - 3*n2**7*n3**3
) + v1**3*( - 4*a33**2*m2**3*n1**5 + 12*i*a33**2*m2**3*n1**4*n2 + 8*a33**2*m2**3
*n1**3*n2**2 + 8*i*a33**2*m2**3*n1**2*n2**3 + 12*a33**2*m2**3*n1*n2**4 - 4*i*a33
**2*m2**3*n2**5) + v1**2*v2*( - 4*i*a33**2*m2**3*n1**5 - 12*a33**2*m2**3*n1**4*
n2 + 8*i*a33**2*m2**3*n1**3*n2**2 - 8*a33**2*m2**3*n1**2*n2**3 + 12*i*a33**2*m2
**3*n1*n2**4 + 4*a33**2*m2**3*n2**5) + v1**2*v3*( - 8*a33**2*m2**3*n1**4*n3 + 16
*i*a33**2*m2**3*n1**3*n2*n3 + 16*i*a33**2*m2**3*n1*n2**3*n3 + 8*a33**2*m2**3*n2
**4*n3) + v1*v2**2*( - 4*a33**2*m2**3*n1**5 + 12*i*a33**2*m2**3*n1**4*n2 + 8*a33
**2*m2**3*n1**3*n2**2 + 8*i*a33**2*m2**3*n1**2*n2**3 + 12*a33**2*m2**3*n1*n2**4
- 4*i*a33**2*m2**3*n2**5) + v1*v2*( - 2*a33*m2**2*n1**7 + 6*i*a33*m2**2*n1**6*n2
+ 2*a33*m2**2*n1**5*n2**2 + 10*i*a33*m2**2*n1**4*n2**3 + 10*a33*m2**2*n1**3*n2
**4 + 2*i*a33*m2**2*n1**2*n2**5 + 6*a33*m2**2*n1*n2**6 - 2*i*a33*m2**2*n2**7) +
v1*v3**2*( - 4*a33**2*m2**3*n1**5 + 12*i*a33**2*m2**3*n1**4*n2 + 8*a33**2*m2**3*
n1**3*n2**2 + 8*i*a33**2*m2**3*n1**2*n2**3 + 12*a33**2*m2**3*n1*n2**4 - 4*i*a33
**2*m2**3*n2**5) + v1*v3*(4*i*a33*m2**2*n1**6*n3 + 8*a33*m2**2*n1**5*n2*n3 + 4*i
*a33*m2**2*n1**4*n2**2*n3 + 16*a33*m2**2*n1**3*n2**3*n3 - 4*i*a33*m2**2*n1**2*n2
**4*n3 + 8*a33*m2**2*n1*n2**5*n3 - 4*i*a33*m2**2*n2**6*n3) + v1*( - i*m2*n1**8*
n2 - 2*m2*n1**7*n2**2 + m2*n1**7*n3**2 - 2*i*m2*n1**6*n2**3 - 3*i*m2*n1**6*n2*n3
**2 - 6*m2*n1**5*n2**4 + 3*m2*n1**5*n2**2*n3**2 - 9*i*m2*n1**4*n2**3*n3**2 - 6*
m2*n1**3*n2**6 + 3*m2*n1**3*n2**4*n3**2 + 2*i*m2*n1**2*n2**7 - 9*i*m2*n1**2*n2**
5*n3**2 - 2*m2*n1*n2**8 + m2*n1*n2**6*n3**2 + i*m2*n2**9 - 3*i*m2*n2**7*n3**2) +
v2**3*( - 4*i*a33**2*m2**3*n1**5 - 12*a33**2*m2**3*n1**4*n2 + 8*i*a33**2*m2**3*
n1**3*n2**2 - 8*a33**2*m2**3*n1**2*n2**3 + 12*i*a33**2*m2**3*n1*n2**4 + 4*a33**2
*m2**3*n2**5) + v2**2*v3*( - 8*a33**2*m2**3*n1**4*n3 + 16*i*a33**2*m2**3*n1**3*
n2*n3 + 16*i*a33**2*m2**3*n1*n2**3*n3 + 8*a33**2*m2**3*n2**4*n3) + v2**2*( - 2*i
*a33*m2**2*n1**7 - 6*a33*m2**2*n1**6*n2 + 2*i*a33*m2**2*n1**5*n2**2 - 10*a33*m2
**2*n1**4*n2**3 + 10*i*a33*m2**2*n1**3*n2**4 - 2*a33*m2**2*n1**2*n2**5 + 6*i*a33
*m2**2*n1*n2**6 + 2*a33*m2**2*n2**7) + v2*v3**2*( - 4*i*a33**2*m2**3*n1**5 - 12*
a33**2*m2**3*n1**4*n2 + 8*i*a33**2*m2**3*n1**3*n2**2 - 8*a33**2*m2**3*n1**2*n2**
3 + 12*i*a33**2*m2**3*n1*n2**4 + 4*a33**2*m2**3*n2**5) + v2*v3*( - 4*a33*m2**2*
n1**6*n3 + 8*i*a33*m2**2*n1**5*n2*n3 - 4*a33*m2**2*n1**4*n2**2*n3 + 16*i*a33*m2
**2*n1**3*n2**3*n3 + 4*a33*m2**2*n1**2*n2**4*n3 + 8*i*a33*m2**2*n1*n2**5*n3 + 4*
a33*m2**2*n2**6*n3) + v2*(m2*n1**8*n2 - 2*i*m2*n1**7*n2**2 + 3*i*m2*n1**7*n3**2
+ 2*m2*n1**6*n2**3 + m2*n1**6*n2*n3**2 - 6*i*m2*n1**5*n2**4 + 9*i*m2*n1**5*n2**2
*n3**2 + 3*m2*n1**4*n2**3*n3**2 - 6*i*m2*n1**3*n2**6 + 9*i*m2*n1**3*n2**4*n3**2
- 2*m2*n1**2*n2**7 + 3*m2*n1**2*n2**5*n3**2 - 2*i*m2*n1*n2**8 + 3*i*m2*n1*n2**6*
n3**2 - m2*n2**9 + m2*n2**7*n3**2) + v3**3*( - 8*a33**2*m2**3*n1**4*n3 + 16*i*
a33**2*m2**3*n1**3*n2*n3 + 16*i*a33**2*m2**3*n1*n2**3*n3 + 8*a33**2*m2**3*n2**4*
n3) + v3**2*( - i*a33*m2**2*n1**7 - 3*a33*m2**2*n1**6*n2 + i*a33*m2**2*n1**5*n2
**2 + 4*i*a33*m2**2*n1**5*n3**2 - 5*a33*m2**2*n1**4*n2**3 + 4*a33*m2**2*n1**4*n2
*n3**2 + 5*i*a33*m2**2*n1**3*n2**4 + 8*i*a33*m2**2*n1**3*n2**2*n3**2 - a33*m2**2
*n1**2*n2**5 + 8*a33*m2**2*n1**2*n2**3*n3**2 + 3*i*a33*m2**2*n1*n2**6 + 4*i*a33*
m2**2*n1*n2**4*n3**2 + a33*m2**2*n2**7 + 4*a33*m2**2*n2**5*n3**2) + v3*( - 2*i*
m2*n1**7*n2*n3 - 2*m2*n1**6*n2**2*n3 + 4*m2*n1**6*n3**3 - 6*i*m2*n1**5*n2**3*n3
- 6*m2*n1**4*n2**4*n3 + 12*m2*n1**4*n2**2*n3**3 - 6*i*m2*n1**3*n2**5*n3 - 6*m2*
n1**2*n2**6*n3 + 12*m2*n1**2*n2**4*n3**3 - 2*i*m2*n1*n2**7*n3 - 2*m2*n2**8*n3 +
4*m2*n2**6*n3**3)$
FI=u1**2*v1**2*(2*a33*n1**6 + 6*a33*n1**4*n2**2 + 6*a33*n1**2*n2**4 + 2*a33*n2**
6) + u1**2*v2**2*(a33*n1**6 + 3*a33*n1**4*n2**2 + 3*a33*n1**2*n2**4 + a33*n2**6)
+ u1**2*v3**2*(a33*n1**6 + 3*a33*n1**4*n2**2 + 3*a33*n1**2*n2**4 + a33*n2**6) +
u1*u3*v1*v3*(2*a33*n1**6 + 6*a33*n1**4*n2**2 + 6*a33*n1**2*n2**4 + 2*a33*n2**6)
+ u1*v1**2*v2*(4*a33*m2*n1**5 - 4*i*a33*m2*n1**4*n2 + 8*a33*m2*n1**3*n2**2 - 8*
i*a33*m2*n1**2*n2**3 + 4*a33*m2*n1*n2**4 - 4*i*a33*m2*n2**5) + u1*v1**2*( - n1**
7 - 3*n1**5*n2**2 - 3*n1**3*n2**4 - n1*n2**6) + u1*v1*v2*(n1**6*n2 + 3*n1**4*n2
**3 + 3*n1**2*n2**5 + n2**7) + u1*v2**3*(2*a33*m2*n1**5 - 2*i*a33*m2*n1**4*n2 +
4*a33*m2*n1**3*n2**2 - 4*i*a33*m2*n1**2*n2**3 + 2*a33*m2*n1*n2**4 - 2*i*a33*m2*
n2**5) + u1*v2**2*( - n1**7 - 3*n1**5*n2**2 - 3*n1**3*n2**4 - n1*n2**6) + u1*v2*
v3**2*(2*a33*m2*n1**5 - 2*i*a33*m2*n1**4*n2 + 4*a33*m2*n1**3*n2**2 - 4*i*a33*m2*
n1**2*n2**3 + 2*a33*m2*n1*n2**4 - 2*i*a33*m2*n2**5) + u1*v3**2*( - n1**7 - 3*n1
**5*n2**2 - 3*n1**3*n2**4 - n1*n2**6) + u2**2*v1**2*(a33*n1**6 + 3*a33*n1**4*n2
**2 + 3*a33*n1**2*n2**4 + a33*n2**6) + u2**2*v3**2*(a33*n1**6 + 3*a33*n1**4*n2**
2 + 3*a33*n1**2*n2**4 + a33*n2**6) + u2*v1**3*( - 2*a33*m2*n1**5 + 2*i*a33*m2*n1
**4*n2 - 4*a33*m2*n1**3*n2**2 + 4*i*a33*m2*n1**2*n2**3 - 2*a33*m2*n1*n2**4 + 2*i
*a33*m2*n2**5) + u2*v1**2*( - n1**6*n2 - 3*n1**4*n2**3 - 3*n1**2*n2**5 - n2**7)
+ u2*v1*v3**2*( - 2*a33*m2*n1**5 + 2*i*a33*m2*n1**4*n2 - 4*a33*m2*n1**3*n2**2 +
4*i*a33*m2*n1**2*n2**3 - 2*a33*m2*n1*n2**4 + 2*i*a33*m2*n2**5) + u2*v3**2*( - n1
**6*n2 - 3*n1**4*n2**3 - 3*n1**2*n2**5 - n2**7) + u3**2*v3**2*(a33*n1**6 + 3*a33
*n1**4*n2**2 + 3*a33*n1**2*n2**4 + a33*n2**6) + u3*v1**2*v3*(2*i*a33*m2*n1**5 +
2*a33*m2*n1**4*n2 + 4*i*a33*m2*n1**3*n2**2 + 4*a33*m2*n1**2*n2**3 + 2*i*a33*m2*
n1*n2**4 + 2*a33*m2*n2**5) + u3*v1**2*( - n1**6*n3 - 3*n1**4*n2**2*n3 - 3*n1**2*
n2**4*n3 - n2**6*n3) + u3*v1*v2*v3*(2*a33*m2*n1**5 - 2*i*a33*m2*n1**4*n2 + 4*a33
*m2*n1**3*n2**2 - 4*i*a33*m2*n1**2*n2**3 + 2*a33*m2*n1*n2**4 - 2*i*a33*m2*n2**5)
+ u3*v2**2*v3*(2*i*a33*m2*n1**5 + 2*a33*m2*n1**4*n2 + 4*i*a33*m2*n1**3*n2**2 +
4*a33*m2*n1**2*n2**3 + 2*i*a33*m2*n1*n2**4 + 2*a33*m2*n2**5) + u3*v2**2*( - n1**
6*n3 - 3*n1**4*n2**2*n3 - 3*n1**2*n2**4*n3 - n2**6*n3) + u3*v2*v3*(n1**6*n2 + 3*
n1**4*n2**3 + 3*n1**2*n2**5 + n2**7) + u3*v3**3*(2*i*a33*m2*n1**5 + 2*a33*m2*n1
**4*n2 + 4*i*a33*m2*n1**3*n2**2 + 4*a33*m2*n1**2*n2**3 + 2*i*a33*m2*n1*n2**4 + 2
*a33*m2*n2**5) + u3*v3**2*( - n1**6*n3 - 3*n1**4*n2**2*n3 - 3*n1**2*n2**4*n3 -
n2**6*n3) + v1**3*(i*m2*n1**6 + 2*m2*n1**5*n2 + i*m2*n1**4*n2**2 + 4*m2*n1**3*n2
**3 - i*m2*n1**2*n2**4 + 2*m2*n1*n2**5 - i*m2*n2**6) + v1**2*v2*( - m2*n1**6 + 2
*i*m2*n1**5*n2 - m2*n1**4*n2**2 + 4*i*m2*n1**3*n2**3 + m2*n1**2*n2**4 + 2*i*m2*
n1*n2**5 + m2*n2**6) + v1**2*v3*(2*i*m2*n1**5*n3 + 2*m2*n1**4*n2*n3 + 4*i*m2*n1
**3*n2**2*n3 + 4*m2*n1**2*n2**3*n3 + 2*i*m2*n1*n2**4*n3 + 2*m2*n2**5*n3) + v1*v2
**2*(i*m2*n1**6 + 2*m2*n1**5*n2 + i*m2*n1**4*n2**2 + 4*m2*n1**3*n2**3 - i*m2*n1
**2*n2**4 + 2*m2*n1*n2**5 - i*m2*n2**6) + v1*v3**2*(i*m2*n1**6 + 2*m2*n1**5*n2 +
i*m2*n1**4*n2**2 + 4*m2*n1**3*n2**3 - i*m2*n1**2*n2**4 + 2*m2*n1*n2**5 - i*m2*
n2**6) + v2**3*( - m2*n1**6 + 2*i*m2*n1**5*n2 - m2*n1**4*n2**2 + 4*i*m2*n1**3*n2
**3 + m2*n1**2*n2**4 + 2*i*m2*n1*n2**5 + m2*n2**6) + v2**2*v3*(2*i*m2*n1**5*n3 +
2*m2*n1**4*n2*n3 + 4*i*m2*n1**3*n2**2*n3 + 4*m2*n1**2*n2**3*n3 + 2*i*m2*n1*n2**
4*n3 + 2*m2*n2**5*n3) + v2*v3**2*( - m2*n1**6 + 2*i*m2*n1**5*n2 - m2*n1**4*n2**2
+ 4*i*m2*n1**3*n2**3 + m2*n1**2*n2**4 + 2*i*m2*n1*n2**5 + m2*n2**6) + v3**3*(2*
i*m2*n1**5*n3 + 2*m2*n1**4*n2*n3 + 4*i*m2*n1**3*n2**2*n3 + 4*m2*n1**2*n2**3*n3 +
2*i*m2*n1*n2**4*n3 + 2*m2*n2**5*n3)$
FI=u1**2*( - i*a33*n1**7 + a33*n1**6*n2 - 3*i*a33*n1**5*n2**2 + 3*a33*n1**4*n2**
3 - 3*i*a33*n1**3*n2**4 + 3*a33*n1**2*n2**5 - i*a33*n1*n2**6 + a33*n2**7) + u1*
v2*( - 2*i*a33*m2*n1**6 - 6*i*a33*m2*n1**4*n2**2 - 6*i*a33*m2*n1**2*n2**4 - 2*i*
a33*m2*n2**6) + u1*(i*n1**8 - n1**7*n2 + 3*i*n1**6*n2**2 - 3*n1**5*n2**3 + 3*i*
n1**4*n2**4 - 3*n1**3*n2**5 + i*n1**2*n2**6 - n1*n2**7) + u2**2*( - i*a33*n1**7
+ a33*n1**6*n2 - 3*i*a33*n1**5*n2**2 + 3*a33*n1**4*n2**3 - 3*i*a33*n1**3*n2**4 +
3*a33*n1**2*n2**5 - i*a33*n1*n2**6 + a33*n2**7) + u2*v1*(2*i*a33*m2*n1**6 + 6*i
*a33*m2*n1**4*n2**2 + 6*i*a33*m2*n1**2*n2**4 + 2*i*a33*m2*n2**6) + u2*(i*n1**7*
n2 - n1**6*n2**2 + 3*i*n1**5*n2**3 - 3*n1**4*n2**4 + 3*i*n1**3*n2**5 - 3*n1**2*
n2**6 + i*n1*n2**7 - n2**8) + u3*v3*(2*a33*m2*n1**6 + 6*a33*m2*n1**4*n2**2 + 6*
a33*m2*n1**2*n2**4 + 2*a33*m2*n2**6) + u3*(i*n1**7*n3 - n1**6*n2*n3 + 3*i*n1**5*
n2**2*n3 - 3*n1**4*n2**3*n3 + 3*i*n1**3*n2**4*n3 - 3*n1**2*n2**5*n3 + i*n1*n2**6
*n3 - n2**7*n3) + v1*(m2*n1**7 - i*m2*n1**6*n2 + 3*m2*n1**5*n2**2 - 3*i*m2*n1**4
*n2**3 + 3*m2*n1**3*n2**4 - 3*i*m2*n1**2*n2**5 + m2*n1*n2**6 - i*m2*n2**7) + v2*
(i*m2*n1**7 + m2*n1**6*n2 + 3*i*m2*n1**5*n2**2 + 3*m2*n1**4*n2**3 + 3*i*m2*n1**3
*n2**4 + 3*m2*n1**2*n2**5 + i*m2*n1*n2**6 + m2*n2**7) + v3*(2*m2*n1**6*n3 + 6*m2
*n1**4*n2**2*n3 + 6*m2*n1**2*n2**4*n3 + 2*m2*n2**6*n3)$