Solution 4 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


r13=0


r14=0


r15=0


      - a33*m1*r338 + i*a33*m2*r338 + 2*b13*n3*r338
r20=------------------------------------------------
                       2*a33*b13


r21=0


r22=0


r23=0


r24=0


r26=0


r27=0


r28=0


r210=0


r212=0


r213=0


r214=0


r215=0


r216=0


r217=0


r218=0


r219=0


r220=0


r30=0


     2*i*b13*r338
r31=--------------
         a33


     2*c13*r338
r32=------------
        b13


r33=0


     2*b13*r338
r34=------------
        a33


r35=0


r36=0


     2*c13*r338
r37=------------
        b13


r38=0


r39=0


r310=2*r338


r311=0


r312=0


r313=0


r314=0


r315=0


r316=0


r317=0


r318=0


r319=0


r320=0


r321=r338


r322=0


r323=i*r338


r324=0


r325=0


r326=0


r327=0


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


r335=0


r336= - i*r338


r337=0


r339=0


r340=0


r341=0


r342=0


r343=0


r344=0


r345=0


r346=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


m3=0


n2=0


n1=0


                         2
      - i*a33*c12 + 2*b13
c33=-----------------------
              a33


c23=i*c13


                           2
      - 2*i*a33*c12 + 4*b13
c22=-------------------------
               a33


c11=0


b33=0


b32=0


b31=0


b23=i*b13


b22=0


b21=0


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r338, m1, m2, n3, c12, c13, b13, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{r338,b13,a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b21,
b22,
 - i*b13 + b23,
b31,
b32,
b33,
c11,
2*i*a33*c12 + a33*c22 - 4*b13**2,
 - i*c13 + c23,
i*a33*c12 + a33*c33 - 2*b13**2,
n1,
n2,
m3}$

The system of equations related to the Hamiltonian HAM:

                                2
HAM=u1*v3*b13 + i*u2*v3*b13 + u3 *a33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13

                                          2
                 2   - 2*i*a33*c12 + 4*b13
     + v1*m1 + v2 *------------------------- + 2*i*v2*v3*c13 + v2*m2
                              a33

                                2
         2   - i*a33*c12 + 2*b13
     + v3 *-----------------------
                     a33

has apart from the Hamiltonian and Casimirs only the following first integral: 

FI=2*u1*v1*v3*a33*b13 - 2*i*u1*v2*v3*a33*b13 + 2*i*u2*v1*v3*a33*b13

                                  2               2                     2    2
    + 2*u2*v2*v3*a33*b13 + 4*u3*v3 *a33*b13 + 4*v1 *v3*a33*c13 + 4*v1*v3 *b13

          2                       2    2     2
    + 4*v2 *v3*a33*c13 + 4*i*v2*v3 *b13  + v3 *( - a33*m1 + i*a33*m2 + 2*b13*n3)

  = a product of the elements of: {2,

   v3,

   u1*v1*a33*b13 - i*u1*v2*a33*b13 + i*u2*v1*a33*b13 + u2*v2*a33*b13

                            2                      2       2
    + 2*u3*v3*a33*b13 + 2*v1 *a33*c13 + 2*v1*v3*b13  + 2*v2 *a33*c13

                   2        - a33*m1 + i*a33*m2 + 2*b13*n3
    + 2*i*v2*v3*b13  + v3*---------------------------------}
                                          2

{HAM,FI} = 0





And again in machine readable form:



HAM=u1*v3*b13 + i*u2*v3*b13 + u3**2*a33 + u3*n3 + 2*v1*v2*c12 + 2*v1*v3*c13 + v1
*m1 + v2**2*( - 2*i*a33*c12 + 4*b13**2)/a33 + 2*i*v2*v3*c13 + v2*m2 + v3**2*( - 
i*a33*c12 + 2*b13**2)/a33$

FI=2*u1*v1*v3*a33*b13 - 2*i*u1*v2*v3*a33*b13 + 2*i*u2*v1*v3*a33*b13 + 2*u2*v2*v3
*a33*b13 + 4*u3*v3**2*a33*b13 + 4*v1**2*v3*a33*c13 + 4*v1*v3**2*b13**2 + 4*v2**2
*v3*a33*c13 + 4*i*v2*v3**2*b13**2 + v3**2*( - a33*m1 + i*a33*m2 + 2*b13*n3)$