Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

      1      4   2         31     2    2   2         1         4
r10=(----*a12 *n2 *r350 - ----*a12 *a13 *n2 *r350 - ---*a12*a13 *n2*r215
      64                   64                        2

         1     4   2          6
      - ---*a13 *n2 *r350)/a13
         4


      1      3   2         9          2   2         1     4
     ----*a12 *n2 *r350 + ----*a12*a13 *n2 *r350 + ---*a13 *n2*r215
      32                   32                       2
r11=----------------------------------------------------------------
                                     5
                                  a13


      1      5               9      3    2               33         4
r12=(----*a12 *n1*n2*r350 + ----*a12 *a13 *n1*n2*r350 + ----*a12*a13 *n1*n2*r350
      64                     32                          64

         1     6             7
      + ---*a13 *n1*r215)/a13
         2


r13=0


r14=0


r15=0


r20=0


r21=0


r23=0


r24=0


r25=0


r26=0


         1      3            17         2
      - ----*a12 *n1*r350 - ----*a12*a13 *n1*r350
         32                  32
r27=----------------------------------------------
                            4
                         a13


      1      3            9          2
     ----*a12 *n2*r350 + ----*a12*a13 *n2*r350
      16                  16
r28=-------------------------------------------
                          4
                       a13


r29=r214


       1      3            17         2
      ----*a12 *n1*r350 + ----*a12*a13 *n1*r350
       32                  32
r210=-------------------------------------------
                           4
                        a13


          1      2            9      2
       - ----*a12 *n2*r350 - ----*a13 *n2*r350
          16                  16
r212=------------------------------------------
                           3
                        a13


r213=0


          3      4            13     2    2                  4
r216=( - ----*a12 *n2*r350 + ----*a12 *a13 *n2*r350 + a12*a13 *r215
          32                  32

          1     4             5
       + ---*a13 *n2*r350)/a13
          2


       1      4            17     2    2            1     4
      ----*a12 *n1*r350 + ----*a12 *a13 *n1*r350 + ---*a13 *n1*r350
       32                  32                       2
r217=---------------------------------------------------------------
                                     5
                                  a13


r219=0


r220=r214


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


r310=0


r311=0


r312=0


r313=0


r314=0


r315=0


r316=0


r317=0


r318=0


r319=0


r320=0


r321=0


r322=0


r323=0


r324=0


r325=0


r326=0


r327=0


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


r335=0


r336=0


r337=0


r338=0


r339=0


r340=0


r341=0


r342=0


          1     2         9     2
       - ---*a12 *r350 - ---*a13 *r350
          8               8
r343=----------------------------------
                       2
                    a13


r344=0


r345=0


r346=0


          1     3         9         2
       - ---*a12 *r350 - ---*a12*a13 *r350
          8               8
r347=--------------------------------------
                         3
                      a13


r348=0


r349=0


      a12*r350
r351=----------
        a13


r352=0


r353=0


r354=0


r355=0


m3=0


m2=0


m1=0


     - a12*n2
n3=-----------
       a13


c33=0


c23=0


c22=0


c13=0


c12=0


b33=0


b31=0


b21=0


b13=0


b11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r214, r215, r350, n2, n1, a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a12,r350,a13}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

                                  2
     2*u1*u2*a12*a13 + 2*u1*u3*a13  + u1*a13*n1 + u2*a13*n2 - u3*a12*n2
HAM=--------------------------------------------------------------------
                                    a13

has apart from the Hamiltonian and Casimirs the following 3 first integrals: 

     2           6     2       7                 1     3    4    9         6
FI=u1 *v2*a12*a13  + u1 *v3*a13  + u1*u2*v1*( - ---*a12 *a13  - ---*a12*a13 )
                                                 8               8

                    1     2    5    9     7
    + u1*u3*v1*( - ---*a12 *a13  - ---*a13 )
                    8               8

              1      4    2       17     2    4       1     6
    + u1*v1*(----*a12 *a13 *n1 + ----*a12 *a13 *n1 + ---*a13 *n1)
              32                  32                  2

                 3      4    2       13     2    4       1     6
    + u1*v2*( - ----*a12 *a13 *n2 + ----*a12 *a13 *n2 + ---*a13 *n2)
                 32                  32                  2

                 1      2    4       9      6
    + u2*v1*( - ----*a12 *a13 *n2 - ----*a13 *n2)
                 16                  16

              1      3    3       17         5
    + u2*v3*(----*a12 *a13 *n1 + ----*a12*a13 *n1)
              32                  32

              1      3    3       9          5
    + u3*v1*(----*a12 *a13 *n2 + ----*a12*a13 *n2)
              16                  16

                 1      3    3       17         5
    + u3*v2*( - ----*a12 *a13 *n1 - ----*a12*a13 *n1)
                 32                  32

           1      5          9      3    2          33         4
    + v1*(----*a12 *n1*n2 + ----*a12 *a13 *n1*n2 + ----*a12*a13 *n1*n2)
           64                32                     64

           1      3    2   2    9          4   2
    + v2*(----*a12 *a13 *n2  + ----*a12*a13 *n2 )
           32                   32

           1      4       2    31     2    3   2    1     5   2
    + v3*(----*a12 *a13*n2  - ----*a12 *a13 *n2  - ---*a13 *n2 )
           64                  64                   4

{HAM,FI} = 0



                            2    1               1               1
FI=u1*v2*a12*a13 + u1*v3*a13  + ---*v1*a13*n1 + ---*v2*a13*n2 - ---*v3*a12*n2
                                 2               2               2

{HAM,FI} = 0



     2     2     2
FI=u1  + u2  + u3

{HAM,FI} = 0





And again in machine readable form:



HAM=(2*u1*u2*a12*a13 + 2*u1*u3*a13**2 + u1*a13*n1 + u2*a13*n2 - u3*a12*n2)/a13$

FI=u1**2*v2*a12*a13**6 + u1**2*v3*a13**7 + u1*u2*v1*( - 1/8*a12**3*a13**4 - 9/8*
a12*a13**6) + u1*u3*v1*( - 1/8*a12**2*a13**5 - 9/8*a13**7) + u1*v1*(1/32*a12**4*
a13**2*n1 + 17/32*a12**2*a13**4*n1 + 1/2*a13**6*n1) + u1*v2*( - 3/32*a12**4*a13
**2*n2 + 13/32*a12**2*a13**4*n2 + 1/2*a13**6*n2) + u2*v1*( - 1/16*a12**2*a13**4*
n2 - 9/16*a13**6*n2) + u2*v3*(1/32*a12**3*a13**3*n1 + 17/32*a12*a13**5*n1) + u3*
v1*(1/16*a12**3*a13**3*n2 + 9/16*a12*a13**5*n2) + u3*v2*( - 1/32*a12**3*a13**3*
n1 - 17/32*a12*a13**5*n1) + v1*(1/64*a12**5*n1*n2 + 9/32*a12**3*a13**2*n1*n2 + 
33/64*a12*a13**4*n1*n2) + v2*(1/32*a12**3*a13**2*n2**2 + 9/32*a12*a13**4*n2**2) 
+ v3*(1/64*a12**4*a13*n2**2 - 31/64*a12**2*a13**3*n2**2 - 1/4*a13**5*n2**2)$

FI=u1*v2*a12*a13 + u1*v3*a13**2 + 1/2*v1*a13*n1 + 1/2*v2*a13*n2 - 1/2*v3*a12*n2$

FI=u1**2 + u2**2 + u3**2$