Solution 8 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


           2                                2            2             3
      - a22 *n3*r29 + 2*a22*a33*n3*r29 - a33 *n3*r29 - n1 *n3*r434 + n3 *r434
r13=--------------------------------------------------------------------------
                         3        2                2      3
                      a22  - 3*a22 *a33 + 3*a22*a33  - a33


r14

        2                                2            2                2
   - a22 *n2*r29 + 2*a22*a33*n2*r29 - a33 *n2*r29 - n1 *n2*r434 + n2*n3 *r434
=-----------------------------------------------------------------------------
                        3        2                2      3
                     a22  - 3*a22 *a33 + 3*a22*a33  - a33


           2                                2            3             2
      - a22 *n1*r29 + 2*a22*a33*n1*r29 - a33 *n1*r29 - n1 *r434 + n1*n3 *r434
r15=--------------------------------------------------------------------------
                         3        2                2      3
                      a22  - 3*a22 *a33 + 3*a22*a33  - a33


r20=0


r21=0


r23=0


r24=0


r25=0


r26=0


r27=0


r28=0


r210=0


r212=0


           2*n2*n3*r434
r213=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


           2          2
       - n1 *r434 + n2 *r434
r214=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


r215=0


r216=0


r217=0


           2*n1*n3*r434
r218=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


           2*n1*n2*r434
r219=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


       - n3*r425
r310=------------
      a22 - a33


       n2*r425
r311=-----------
      a22 - a33


       - n3*r425
r312=------------
      a22 - a33


r313=0


r314=0


       - n3*r425
r315=------------
      a22 - a33


r316=0


r317=0


r318=0


       - 2*n3*r434
r319=--------------
       a22 - a33


       - n2*r425
r320=------------
      a22 - a33


r323=0


       - n2*r425
r325=------------
      a22 - a33


r326=0


r328=0


       - 2*n2*r434
r329=--------------
       a22 - a33


r330=0


r332=0


r333=0


r334=0


       - n1*r425
r335=------------
      a22 - a33


r336=0


       - n1*r425
r337=------------
      a22 - a33


r338=0


       n2*r425
r339=-----------
      a22 - a33


       - n1*r425
r340=------------
      a22 - a33


r341=0


r342=0


r343=0


       - 2*n1*r434
r344=--------------
       a22 - a33


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r426=0


r427=r425


r428=0


r429=0


r430=r425


r431=0


r432=0


r433=0


r435=0


r439=0


r442=0


r444=0


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


r455=0


r458=0


r460=0


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


m3=0


m2=0


m1=0


c33=0


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a23=0


a13=0


a12=0


a11=a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r29, r425, r434, n3, n2, n1, a33, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{n2,r434,a11,a22 - a33,a33,a22}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - a22,
a12,
a13,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
m1,
m2,
m3}$

The system of equations related to the Hamiltonian HAM:

      2                 2                 2
HAM=u1 *a22 + u1*n1 + u2 *a22 + u2*n2 + u3 *a33 + u3*n3

has apart from the Hamiltonian and Casimirs the following 3 first integrals: 

FI=u1*u2*(2*a22*n1*n2 - 2*a33*n1*n2)

           2          2                          2
    + u1*u3 *( - 2*a22 *n1 + 4*a22*a33*n1 - 2*a33 *n1)

                                                   3        2
    + u1*u3*(2*a22*n1*n3 - 2*a33*n1*n3) + u1*( - n1  + n1*n3 )

        2           2         2         2         2
    + u2 *( - a22*n1  + a22*n2  + a33*n1  - a33*n2 )

           2          2                          2
    + u2*u3 *( - 2*a22 *n2 + 4*a22*a33*n2 - 2*a33 *n2)

                                                   2           2
    + u2*u3*(2*a22*n2*n3 - 2*a33*n2*n3) + u2*( - n1 *n2 + n2*n3 )

        4     3        2                2      3
    + u3 *(a22  - 3*a22 *a33 + 3*a22*a33  - a33 )

        3          2                          2                2        3
    + u3 *( - 2*a22 *n3 + 4*a22*a33*n3 - 2*a33 *n3) + u3*( - n1 *n3 + n3 )

which the program can not factorize further.

{HAM,FI} = 0



        2        2                        2
FI=u1*v1 *( - a22 *n1 + 2*a22*a33*n1 - a33 *n1)

                   2                        2
    + u1*v1*v2*(a22 *n2 - 2*a22*a33*n2 + a33 *n2)

           2        2                        2
    + u1*v2 *( - a22 *n1 + 2*a22*a33*n1 - a33 *n1)

           2        2                        2
    + u1*v3 *( - a22 *n1 + 2*a22*a33*n1 - a33 *n1)

           2        2                        2
    + u2*v1 *( - a22 *n2 + 2*a22*a33*n2 - a33 *n2)

           2        2                        2
    + u2*v3 *( - a22 *n2 + 2*a22*a33*n2 - a33 *n2)

        2   2     3        2                2      3
    + u3 *v1 *(a22  - 3*a22 *a33 + 3*a22*a33  - a33 )

        2   2     3        2                2      3
    + u3 *v2 *(a22  - 3*a22 *a33 + 3*a22*a33  - a33 )

        2   2     3        2                2      3
    + u3 *v3 *(a22  - 3*a22 *a33 + 3*a22*a33  - a33 )

           2        2                        2
    + u3*v1 *( - a22 *n3 + 2*a22*a33*n3 - a33 *n3)

           2        2                        2
    + u3*v2 *( - a22 *n3 + 2*a22*a33*n3 - a33 *n3)

                   2                        2
    + u3*v2*v3*(a22 *n2 - 2*a22*a33*n2 + a33 *n2)

           2        2                        2
    + u3*v3 *( - a22 *n3 + 2*a22*a33*n3 - a33 *n3)

  = a product of the elements of: {a22 - a33,

   a22 - a33,

           2                         2           2           2           2
    - u1*v1 *n1 + u1*v1*v2*n2 - u1*v2 *n1 - u1*v3 *n1 - u2*v1 *n2 - u2*v3 *n2

        2   2                 2   2                 2   2
    + u3 *v1 *(a22 - a33) + u3 *v2 *(a22 - a33) + u3 *v3 *(a22 - a33)

           2           2                         2
    - u3*v1 *n3 - u3*v2 *n3 + u3*v2*v3*n2 - u3*v3 *n3}

{HAM,FI} = {2,

            a22 - a33,

            a22 - a33,

            u1*v1 + u2*v2 + u3*v3,

            n2,

                                     1           1
            u1*v3*a22 - u3*v1*a33 - ---*v1*n3 + ---*v3*n1}
                                     2           2



             2                        2
FI=u1*( - a22 *n1 + 2*a22*a33*n1 - a33 *n1)

                2                        2
    + u2*( - a22 *n2 + 2*a22*a33*n2 - a33 *n2)

        2     3        2                2      3
    + u3 *(a22  - 3*a22 *a33 + 3*a22*a33  - a33 )

                2                        2
    + u3*( - a22 *n3 + 2*a22*a33*n3 - a33 *n3)

  = a product of the elements of: {a22 - a33,

   a22 - a33,

                        2
    - u1*n1 - u2*n2 + u3 *(a22 - a33) - u3*n3}

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a22 + u1*n1 + u2**2*a22 + u2*n2 + u3**2*a33 + u3*n3$

FI=u1*u2*(2*a22*n1*n2 - 2*a33*n1*n2) + u1*u3**2*( - 2*a22**2*n1 + 4*a22*a33*n1 -
 2*a33**2*n1) + u1*u3*(2*a22*n1*n3 - 2*a33*n1*n3) + u1*( - n1**3 + n1*n3**2) + 
u2**2*( - a22*n1**2 + a22*n2**2 + a33*n1**2 - a33*n2**2) + u2*u3**2*( - 2*a22**2
*n2 + 4*a22*a33*n2 - 2*a33**2*n2) + u2*u3*(2*a22*n2*n3 - 2*a33*n2*n3) + u2*( - 
n1**2*n2 + n2*n3**2) + u3**4*(a22**3 - 3*a22**2*a33 + 3*a22*a33**2 - a33**3) + 
u3**3*( - 2*a22**2*n3 + 4*a22*a33*n3 - 2*a33**2*n3) + u3*( - n1**2*n3 + n3**3)$

FI=u1*v1**2*( - a22**2*n1 + 2*a22*a33*n1 - a33**2*n1) + u1*v1*v2*(a22**2*n2 - 2*
a22*a33*n2 + a33**2*n2) + u1*v2**2*( - a22**2*n1 + 2*a22*a33*n1 - a33**2*n1) + 
u1*v3**2*( - a22**2*n1 + 2*a22*a33*n1 - a33**2*n1) + u2*v1**2*( - a22**2*n2 + 2*
a22*a33*n2 - a33**2*n2) + u2*v3**2*( - a22**2*n2 + 2*a22*a33*n2 - a33**2*n2) + 
u3**2*v1**2*(a22**3 - 3*a22**2*a33 + 3*a22*a33**2 - a33**3) + u3**2*v2**2*(a22**
3 - 3*a22**2*a33 + 3*a22*a33**2 - a33**3) + u3**2*v3**2*(a22**3 - 3*a22**2*a33 +
 3*a22*a33**2 - a33**3) + u3*v1**2*( - a22**2*n3 + 2*a22*a33*n3 - a33**2*n3) + 
u3*v2**2*( - a22**2*n3 + 2*a22*a33*n3 - a33**2*n3) + u3*v2*v3*(a22**2*n2 - 2*a22
*a33*n2 + a33**2*n2) + u3*v3**2*( - a22**2*n3 + 2*a22*a33*n3 - a33**2*n3)$

FI=u1*( - a22**2*n1 + 2*a22*a33*n1 - a33**2*n1) + u2*( - a22**2*n2 + 2*a22*a33*
n2 - a33**2*n2) + u3**2*(a22**3 - 3*a22**2*a33 + 3*a22*a33**2 - a33**3) + u3*( -
 a22**2*n3 + 2*a22*a33*n3 - a33**2*n3)$