Solution 3 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

r40

    1      5    3          1      3    2    3          1          4    3
  -----*a12 *b11 *r496 + -----*a12 *a13 *b11 *r496 - -----*a12*a13 *b11 *r496
   864                    432                         288
=-----------------------------------------------------------------------------
                                        8
                                     a13


       1      4    3          1      2    2    3
     -----*a12 *b11 *r496 + -----*a12 *a13 *b11 *r496
      648                    162
r41=--------------------------------------------------
                              7
                           a13


       1      3    3          1          2    3
     -----*a12 *b11 *r496 - -----*a12*a13 *b11 *r496
      432                    432
r42=-------------------------------------------------
                             6
                          a13


       1      2    3
     -----*a12 *b11 *r496
      216
r43=----------------------
                5
             a13


r45=0


r46=0


r47=0


r48=0


       1      4    3         11      2    2    3         5      4    3
     -----*a12 *b11 *r496 - -----*a12 *a13 *b11 *r496 - ----*a13 *b11 *r496
      108                    288                         96
r49=------------------------------------------------------------------------
                                      3    4
                                   a12 *a13


           1      2    3          1      2    3
       - -----*a12 *b11 *r496 - -----*a13 *b11 *r496
          216                    216
r410=------------------------------------------------
                              5
                           a13


r411

       1      4    3         47      2    2    3         55      4    3
   - -----*a12 *b11 *r496 + -----*a12 *a13 *b11 *r496 + -----*a13 *b11 *r496
      216                    864                         864
=----------------------------------------------------------------------------
                                          6
                                   a12*a13


r412=0


r413=0


r414

       1      4    3          49      2    2    3          55      4    3
   - -----*a12 *b11 *r496 + ------*a12 *a13 *b11 *r496 + ------*a13 *b11 *r496
      864                    1728                         1728
=------------------------------------------------------------------------------
                                           6
                                    a12*a13


r415=0


r416=0


r417=0


r418=0


          1          2
       - ----*a12*b11 *r496
          36
r419=-----------------------
                 3
              a13


       1      2
      ----*b11 *r496
       36
r420=----------------
              2
           a13


          1          2
       - ----*a12*b11 *r496
          36
r421=-----------------------
                 3
              a13


r422=0


r423=0


r424=0


          1
       - ---*a12*b11*r496
          6
r425=---------------------
                2
             a13


r426=0


          1
       - ----*a12*b11*r496
          12
r427=----------------------
                 2
              a13


r428=0


r429=0


r430=0


r431=0


r432=0


r433=0


r434=0


r435=0


          1      2
       - ----*b11 *r496
          36
r439=-------------------
               2
            a13


r442=0


r444=0


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


          1
       - ----*a12*b11*r496
          12
r455=----------------------
                 2
              a13


r458=0


r460=0


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


       19     2    2         5      2    2
      ----*a12 *b11 *r496 + ----*a13 *b11 *r496
       72                    24
r470=-------------------------------------------
                             3
                      a12*a13


          11     2    2         5      2    2
       - ----*a12 *b11 *r496 - ----*a13 *b11 *r496
          72                    24
r471=----------------------------------------------
                          2    2
                       a12 *a13


       19     2    2         5      2    2
      ----*a12 *b11 *r496 + ----*a13 *b11 *r496
       72                    24
r472=-------------------------------------------
                             3
                      a12*a13


          11     2    2         5      2    2
       - ----*a12 *b11 *r496 - ----*a13 *b11 *r496
          72                    24
r473=----------------------------------------------
                          2    2
                       a12 *a13


r474=0


r475=0


r476=0


r477=0


       1      2
      ----*b11 *r496
       36
r478=----------------
              2
           a13


r479=0


r480=0


r481=0


          1
       - ---*a12*b11*r496
          6
r483=---------------------
                2
             a13


          1
       - ---*b11*r496
          3
r484=-----------------
            a13


r485=0


      a12*r496
r486=----------
        a13


r487= - r496


r488=0


r489=0


r490=0


       1      2             5      2
      ----*a12 *b11*r496 + ----*a13 *b11*r496
       12                   12
r493=-----------------------------------------
                          3
                       a13


r495=0


r498=0


r499=0


       a12*r496
r4100=----------
         a13


r4102=0


r4103=0


r4104=0


        1      3             1         2
       ----*a12 *b11*r496 - ---*a12*a13 *b11*r496
        12                   3
r4105=--------------------------------------------
                             4
                          a13


           1     2             1     2
        - ---*a12 *b11*r496 - ---*a13 *b11*r496
           6                   6
r4106=------------------------------------------
                            3
                         a13


        5
       ----*b11*r496
        12
r4107=---------------
            a12


r4108=0


r4109=0


           1      3             1         2
        - ----*a12 *b11*r496 - ---*a12*a13 *b11*r496
           12                   2
r4110=-----------------------------------------------
                              4
                           a13


r4111=0


r4112=0


             3               2
        - a12 *r496 - a12*a13 *r496
r4113=------------------------------
                      3
                   a13


r4115=0


           3     2         1     2
        - ---*a12 *r496 - ---*a13 *r496
           2               2
r4117=----------------------------------
                        2
                     a13


r4118=0


r4119=0


           1     3         1         2
        - ---*a12 *r496 + ---*a12*a13 *r496
           2               2
r4120=--------------------------------------
                          3
                       a13


r4121= - r496


r4122=0


r4123=0


r4124=0


r4125=0


c33=0


c23=0


c22=0


         1      2
      - ----*b11
         36
c13=--------------
         a13


      1          2
     ----*a12*b11
      36
c12=---------------
            2
         a13


b33=0


b31=0


b21=0


b13=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r496, b11, a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a12,r496,a13,b11}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

                    2              3            2        1                2
HAM=(2*u1*u2*a12*a13  + 2*u1*u3*a13  + u1*v1*a13 *b11 + ----*v1*v2*a12*b11
                                                         18

         1                2     2
      - ----*v1*v3*a13*b11 )/a13
         18

has apart from the Hamiltonian and Casimirs only the following first integral: 

        3       3    8     3         1     6    5    1     4    7
FI= - u1 *v2*a12 *a13  + u1 *v3*( - ---*a12 *a13  + ---*a12 *a13 )
                                     2               2

        2            3     5    6    1     3    8
    + u1 *u2*v1*( - ---*a12 *a13  - ---*a12 *a13 )
                     2               2

        2              6    5      4    7
    + u1 *u3*v1*( - a12 *a13  - a12 *a13 )

        2   2      1      6    4        1     4    6
    + u1 *v1 *( - ----*a12 *a13 *b11 - ---*a12 *a13 *b11)
                   12                   2

       5     2   2    2    8
    + ----*u1 *v2 *a12 *a13 *b11
       12

        2            1     5    5        1     3    7
    + u1 *v2*v3*( - ---*a12 *a13 *b11 - ---*a12 *a13 *b11)
                     6                   6

        2   2   1      6    4        1     4    6             2       4    7
    + u1 *v3 *(----*a12 *a13 *b11 - ---*a12 *a13 *b11) + u1*u2 *v3*a12 *a13
                12                   3

                     3    8
    + u1*u2*u3*v3*a12 *a13

                    1      5    5        5      3    7
    + u1*u2*v1*v3*(----*a12 *a13 *b11 + ----*a12 *a13 *b11)
                    12                   12

           2       3    8        2       4    7    1                 3    7
    - u1*u3 *v2*a12 *a13  + u1*u3 *v3*a12 *a13  - ---*u1*u3*v1*v2*a12 *a13 *b11
                                                   3

       1                 4    6        1        2       3    6    2
    - ---*u1*u3*v1*v3*a12 *a13 *b11 + ----*u1*v1 *v2*a12 *a13 *b11
       6                               36

           3      11     3    6    2    5          8    2
    + u1*v2 *( - ----*a12 *a13 *b11  - ----*a12*a13 *b11 )
                  72                    24

           2      19     4    5    2    5      2    7    2
    + u1*v2 *v3*(----*a12 *a13 *b11  + ----*a12 *a13 *b11 )
                  72                    24

              2      11     3    6    2    5          8    2
    + u1*v2*v3 *( - ----*a12 *a13 *b11  - ----*a12*a13 *b11 )
                     72                    24

           3   19     4    5    2    5      2    7    2
    + u1*v3 *(----*a12 *a13 *b11  + ----*a12 *a13 *b11 )
               72                    24

       1     2   2    4    6        1           2    3    6    2
    - ----*u2 *v3 *a12 *a13 *b11 - ----*u2*v1*v3 *a12 *a13 *b11
       12                           36

       1     2   2    4    6        1    2   2    4    6
    - ----*u3 *v2 *a12 *a13 *b11 - ---*u3 *v3 *a12 *a13 *b11
       12                           6

       1           2    4    5    2    1                  3    6    2
    - ----*u3*v1*v2 *a12 *a13 *b11  + ----*u3*v1*v2*v3*a12 *a13 *b11
       36                              36

       1           2    4    5    2     4
    - ----*u3*v1*v3 *a12 *a13 *b11  + v1
       36

          1      6    2    3     49      4    4    3     55      2    6    3
   *( - -----*a12 *a13 *b11  + ------*a12 *a13 *b11  + ------*a12 *a13 *b11 ) + 
         864                    1728                    1728

     2   2
   v1 *v2

          1      6    2    3    47      4    4    3    55      2    6    3
   *( - -----*a12 *a13 *b11  + -----*a12 *a13 *b11  + -----*a12 *a13 *b11 )
         216                    864                    864

        2             1      5    3    3     1      3    5    3
    + v1 *v2*v3*( - -----*a12 *a13 *b11  - -----*a12 *a13 *b11 )
                     216                    216

        2   2    1      4    4    3    11      2    6    3    5      8    3
    + v1 *v3 *(-----*a12 *a13 *b11  - -----*a12 *a13 *b11  - ----*a13 *b11 )
                108                    288                    96

        1     3       5    3    3
    + -----*v2 *v3*a12 *a13 *b11
       216

        2   2    1      6    2    3     1      4    4    3
    + v2 *v3 *(-----*a12 *a13 *b11  - -----*a12 *a13 *b11 )
                432                    432

           3    1      7        3     1      5    3    3
    + v2*v3 *(-----*a12 *a13*b11  + -----*a12 *a13 *b11 )
               648                   162

        4    1      8    3     1      6    2    3     1      4    4    3
    + v3 *(-----*a12 *b11  + -----*a12 *a13 *b11  - -----*a12 *a13 *b11 )
            864               432                    288

{HAM,FI} = too large to simplify





And again in machine readable form:



HAM=(2*u1*u2*a12*a13**2 + 2*u1*u3*a13**3 + u1*v1*a13**2*b11 + 1/18*v1*v2*a12*b11
**2 - 1/18*v1*v3*a13*b11**2)/a13**2$

FI= - u1**3*v2*a12**3*a13**8 + u1**3*v3*( - 1/2*a12**6*a13**5 + 1/2*a12**4*a13**
7) + u1**2*u2*v1*( - 3/2*a12**5*a13**6 - 1/2*a12**3*a13**8) + u1**2*u3*v1*( - 
a12**6*a13**5 - a12**4*a13**7) + u1**2*v1**2*( - 1/12*a12**6*a13**4*b11 - 1/2*
a12**4*a13**6*b11) + 5/12*u1**2*v2**2*a12**2*a13**8*b11 + u1**2*v2*v3*( - 1/6*
a12**5*a13**5*b11 - 1/6*a12**3*a13**7*b11) + u1**2*v3**2*(1/12*a12**6*a13**4*b11
 - 1/3*a12**4*a13**6*b11) + u1*u2**2*v3*a12**4*a13**7 + u1*u2*u3*v3*a12**3*a13**
8 + u1*u2*v1*v3*(1/12*a12**5*a13**5*b11 + 5/12*a12**3*a13**7*b11) - u1*u3**2*v2*
a12**3*a13**8 + u1*u3**2*v3*a12**4*a13**7 - 1/3*u1*u3*v1*v2*a12**3*a13**7*b11 - 
1/6*u1*u3*v1*v3*a12**4*a13**6*b11 + 1/36*u1*v1**2*v2*a12**3*a13**6*b11**2 + u1*
v2**3*( - 11/72*a12**3*a13**6*b11**2 - 5/24*a12*a13**8*b11**2) + u1*v2**2*v3*(19
/72*a12**4*a13**5*b11**2 + 5/24*a12**2*a13**7*b11**2) + u1*v2*v3**2*( - 11/72*
a12**3*a13**6*b11**2 - 5/24*a12*a13**8*b11**2) + u1*v3**3*(19/72*a12**4*a13**5*
b11**2 + 5/24*a12**2*a13**7*b11**2) - 1/12*u2**2*v3**2*a12**4*a13**6*b11 - 1/36*
u2*v1*v3**2*a12**3*a13**6*b11**2 - 1/12*u3**2*v2**2*a12**4*a13**6*b11 - 1/6*u3**
2*v3**2*a12**4*a13**6*b11 - 1/36*u3*v1*v2**2*a12**4*a13**5*b11**2 + 1/36*u3*v1*
v2*v3*a12**3*a13**6*b11**2 - 1/36*u3*v1*v3**2*a12**4*a13**5*b11**2 + v1**4*( - 1
/864*a12**6*a13**2*b11**3 + 49/1728*a12**4*a13**4*b11**3 + 55/1728*a12**2*a13**6
*b11**3) + v1**2*v2**2*( - 1/216*a12**6*a13**2*b11**3 + 47/864*a12**4*a13**4*b11
**3 + 55/864*a12**2*a13**6*b11**3) + v1**2*v2*v3*( - 1/216*a12**5*a13**3*b11**3 
- 1/216*a12**3*a13**5*b11**3) + v1**2*v3**2*(1/108*a12**4*a13**4*b11**3 - 11/288
*a12**2*a13**6*b11**3 - 5/96*a13**8*b11**3) + 1/216*v2**3*v3*a12**5*a13**3*b11**
3 + v2**2*v3**2*(1/432*a12**6*a13**2*b11**3 - 1/432*a12**4*a13**4*b11**3) + v2*
v3**3*(1/648*a12**7*a13*b11**3 + 1/162*a12**5*a13**3*b11**3) + v3**4*(1/864*a12
**8*b11**3 + 1/432*a12**6*a13**2*b11**3 - 1/288*a12**4*a13**4*b11**3)$