Solution 9 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


         1     2                                    1     2
r11=( - ---*a22 *b33*n2*r29 + a22*a33*b33*n2*r29 - ---*a33 *b33*n2*r29
         2                                          2

         1           2           4        3            2    2          3
      + ---*b33*n2*n3 *r434)/(a22  - 3*a22 *a33 + 3*a22 *a33  - a22*a33 )
         2


r12=0


           2                                2            3
      - a22 *n3*r29 + 2*a22*a33*n3*r29 - a33 *n3*r29 + n3 *r434
r13=------------------------------------------------------------
                  3        2                2      3
               a22  - 3*a22 *a33 + 3*a22*a33  - a33


           2                                2               2
      - a22 *n2*r29 + 2*a22*a33*n2*r29 - a33 *n2*r29 + n2*n3 *r434
r14=---------------------------------------------------------------
                    3        2                2      3
                 a22  - 3*a22 *a33 + 3*a22*a33  - a33


r15=0


             1     2   2
          - ---*b33 *n2 *r434
             4
r20=-------------------------------
        4        3          2    2
     a22  - 2*a22 *a33 + a22 *a33


r21=0


r23=0


r24=0


             1     2   2
          - ---*b33 *n2 *r434
             4
r25=-------------------------------
        4        3          2    2
     a22  - 2*a22 *a33 + a22 *a33


                    2
            - b33*n2 *r434
r26=------------------------------
        3        2              2
     a22  - 2*a22 *a33 + a22*a33


            b33*n2*n3*r434
r27=------------------------------
        3        2              2
     a22  - 2*a22 *a33 + a22*a33


r28=0


r210=0


r212=0


           2*n2*n3*r434
r213=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


               2
             n2 *r434
r214=-------------------------
         2                  2
      a22  - 2*a22*a33 + a33


r215=0


r216=0


                     2
             - b33*n2 *r434
r217=------------------------------
         3        2              2
      a22  - 2*a22 *a33 + a22*a33


r218=0


r219=0


r30=0


         1
      - ---*b33*n2*r425
         2
r31=--------------------
          2
       a22  - a22*a33


r32=0


         1
      - ---*b33*n2*r425
         2
r33=--------------------
          2
       a22  - a22*a33


r34=0


r35=0


r36=0


r37=0


         1
      - ---*b33*n2*r425
         2
r38=--------------------
          2
       a22  - a22*a33


r39=0


       - n3*r425
r310=------------
      a22 - a33


       n2*r425
r311=-----------
      a22 - a33


       - n3*r425
r312=------------
      a22 - a33


r313=0


r314=0


       - n3*r425
r315=------------
      a22 - a33


r316=0


       - b33*n2*r434
r317=----------------
         2
      a22  - a22*a33


r318=0


       - 2*n3*r434
r319=--------------
       a22 - a33


       - n2*r425
r320=------------
      a22 - a33


r323=0


       - n2*r425
r325=------------
      a22 - a33


r326=0


r328=0


       - 2*n2*r434
r329=--------------
       a22 - a33


r330=0


r332=0


r333=0


r334=0


r335=0


r336=0


r337=0


r338=0


       n2*r425
r339=-----------
      a22 - a33


r340=0


r341=0


r342=0


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r426=0


r427=r425


r428=0


r429=0


r430=r425


r431=0


r432=0


r433=0


r435=0


r439=0


r442=0


r444=0


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


r455=0


r458=0


r460=0


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


     - b33*n3
m3=-----------
    a22 - a33


        1                1
     - ---*a22*b33*n2 - ---*a33*b33*n2
        2                2
m2=------------------------------------
                 2
              a22  - a22*a33


m1=0


n1=0


         1     2
      - ---*b33
         4
c33=-------------
         a22


c23=0


c22=0


c13=0


c12=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a23=0


a13=0


a12=0


a11=a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r29, r425, r434, n3, b33, n2, a33, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{b33,a22,a33,a22 - a33,a11,r434,n2}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - a22,
a12,
a13,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
c11,
c12,
c13,
c22,
c23,
a22*c33 + 1/4*b33**2,
n1,
m1,
a22**2*m2 - a22*a33*m2 + 1/2*a22*b33*n2 + 1/2*a33*b33*n2,
a22*m3 - a33*m3 + b33*n3}$

The system of equations related to the Hamiltonian HAM:

      2         2                 2
HAM=u1 *a22 + u2 *a22 + u2*n2 + u3 *a33 + u3*v3*b33 + u3*n3

               1                1                     1    2    2
            - ---*a22*b33*n2 - ---*a33*b33*n2      - ---*v3 *b33
               2                2                     4
     + v2*------------------------------------ + -----------------
                        2                               a22
                     a22  - a22*a33

         - v3*b33*n3
     + --------------
         a22 - a33

has apart from the Hamiltonian and Casimirs the following 3 first integrals: 

                2       2                 2      2     3   2      2       2
FI=u1*v1*( - a22 *b33*n2  + a22*a33*b33*n2 ) + u2 *(a22 *n2  - a22 *a33*n2 )

           2          4           3               2    2
    + u2*u3 *( - 2*a22 *n2 + 4*a22 *a33*n2 - 2*a22 *a33 *n2)

                  3              2                    2      2
    + u2*u3*(2*a22 *n2*n3 - 2*a22 *a33*n2*n3) + u2*a22 *n2*n3

        4     5        4            3    2      2    3
    + u3 *(a22  - 3*a22 *a33 + 3*a22 *a33  - a22 *a33 )

        3          4           3               2    2
    + u3 *( - 2*a22 *n3 + 4*a22 *a33*n3 - 2*a22 *a33 *n3)

        2           3               2                     2
    + u3 *v2*( - a22 *b33*n2 + 2*a22 *a33*b33*n2 - a22*a33 *b33*n2)

                2
    + u3*v2*(a22 *b33*n2*n3 - a22*a33*b33*n2*n3)

                   2       2                 2          2   3
    + u3*v3*( - a22 *b33*n2  + a22*a33*b33*n2 ) + u3*a22 *n3

        2      1         2   2    1         2   2     1                  2
    + v1 *( - ---*a22*b33 *n2  + ---*a33*b33 *n2 ) + ---*v2*a22*b33*n2*n3
               4                  4                   2

        2      1         2   2    1         2   2
    + v3 *( - ---*a22*b33 *n2  + ---*a33*b33 *n2 )
               4                  4

which the program can not factorize further.

{HAM,FI} = 0



                3           2                 2
FI=u1*v1*v2*(a22 *n2 - 2*a22 *a33*n2 + a22*a33 *n2)

           2        3           2                 2
    + u2*v1 *( - a22 *n2 + 2*a22 *a33*n2 - a22*a33 *n2)

           2        3           2                 2
    + u2*v3 *( - a22 *n2 + 2*a22 *a33*n2 - a22*a33 *n2)

        2   2     4        3            2    2          3
    + u3 *v1 *(a22  - 3*a22 *a33 + 3*a22 *a33  - a22*a33 )

        2   2     4        3            2    2          3
    + u3 *v2 *(a22  - 3*a22 *a33 + 3*a22 *a33  - a22*a33 )

        2   2     4        3            2    2          3
    + u3 *v3 *(a22  - 3*a22 *a33 + 3*a22 *a33  - a22*a33 )

           2        3           2                 2
    + u3*v1 *( - a22 *n3 + 2*a22 *a33*n3 - a22*a33 *n3)

           2        3           2                 2
    + u3*v2 *( - a22 *n3 + 2*a22 *a33*n3 - a22*a33 *n3)

                   3           2                 2
    + u3*v2*v3*(a22 *n2 - 2*a22 *a33*n2 + a22*a33 *n2)

           2        3           2                 2
    + u3*v3 *( - a22 *n3 + 2*a22 *a33*n3 - a22*a33 *n3)

        2         1     2                            1     2
    + v1 *v2*( - ---*a22 *b33*n2 + a22*a33*b33*n2 - ---*a33 *b33*n2)
                  2                                  2

        3      1     2                            1     2
    + v2 *( - ---*a22 *b33*n2 + a22*a33*b33*n2 - ---*a33 *b33*n2)
               2                                  2

           2      1     2                            1     2
    + v2*v3 *( - ---*a22 *b33*n2 + a22*a33*b33*n2 - ---*a33 *b33*n2)
                  2                                  2

  = a product of the elements of: {a22 - a33,

   a22 - a33,

                          2               2            2   2     2
   u1*v1*v2*a22*n2 - u2*v1 *a22*n2 - u2*v3 *a22*n2 + u3 *v1 *(a22  - a22*a33)

        2   2     2                2   2     2                   2
    + u3 *v2 *(a22  - a22*a33) + u3 *v3 *(a22  - a22*a33) - u3*v1 *a22*n3

           2                                 2           1    2
    - u3*v2 *a22*n3 + u3*v2*v3*a22*n2 - u3*v3 *a22*n3 - ---*v1 *v2*b33*n2
                                                         2

       1    3           1       2
    - ---*v2 *b33*n2 - ---*v2*v3 *b33*n2}
       2                2

{HAM,FI} = {2,

            a22 - a33,

            a22 - a33,

            u1*v1 + u2*v2 + u3*v3,

            n2,

            a22,

                                     1               1
            u1*v3*a22 - u3*v1*a33 - ---*v1*v3*b33 - ---*v1*n3}
                                     2               2



             3           2                 2
FI=u2*( - a22 *n2 + 2*a22 *a33*n2 - a22*a33 *n2)

        2     4        3            2    2          3
    + u3 *(a22  - 3*a22 *a33 + 3*a22 *a33  - a22*a33 )

                3           2                 2
    + u3*( - a22 *n3 + 2*a22 *a33*n3 - a22*a33 *n3)

              1     2                            1     2
    + v2*( - ---*a22 *b33*n2 + a22*a33*b33*n2 - ---*a33 *b33*n2)
              2                                  2

  = a product of the elements of: {a22 - a33,

   a22 - a33,

                    2     2                           1
    - u2*a22*n2 + u3 *(a22  - a22*a33) - u3*a22*n3 - ---*v2*b33*n2}
                                                      2

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a22 + u2**2*a22 + u2*n2 + u3**2*a33 + u3*v3*b33 + u3*n3 + v2*( - 1/2*
a22*b33*n2 - 1/2*a33*b33*n2)/(a22**2 - a22*a33) + ( - 1/4*v3**2*b33**2)/a22 + ( 
- v3*b33*n3)/(a22 - a33)$

FI=u1*v1*( - a22**2*b33*n2**2 + a22*a33*b33*n2**2) + u2**2*(a22**3*n2**2 - a22**
2*a33*n2**2) + u2*u3**2*( - 2*a22**4*n2 + 4*a22**3*a33*n2 - 2*a22**2*a33**2*n2) 
+ u2*u3*(2*a22**3*n2*n3 - 2*a22**2*a33*n2*n3) + u2*a22**2*n2*n3**2 + u3**4*(a22
**5 - 3*a22**4*a33 + 3*a22**3*a33**2 - a22**2*a33**3) + u3**3*( - 2*a22**4*n3 + 
4*a22**3*a33*n3 - 2*a22**2*a33**2*n3) + u3**2*v2*( - a22**3*b33*n2 + 2*a22**2*
a33*b33*n2 - a22*a33**2*b33*n2) + u3*v2*(a22**2*b33*n2*n3 - a22*a33*b33*n2*n3) +
 u3*v3*( - a22**2*b33*n2**2 + a22*a33*b33*n2**2) + u3*a22**2*n3**3 + v1**2*( - 1
/4*a22*b33**2*n2**2 + 1/4*a33*b33**2*n2**2) + 1/2*v2*a22*b33*n2*n3**2 + v3**2*( 
- 1/4*a22*b33**2*n2**2 + 1/4*a33*b33**2*n2**2)$

FI=u1*v1*v2*(a22**3*n2 - 2*a22**2*a33*n2 + a22*a33**2*n2) + u2*v1**2*( - a22**3*
n2 + 2*a22**2*a33*n2 - a22*a33**2*n2) + u2*v3**2*( - a22**3*n2 + 2*a22**2*a33*n2
 - a22*a33**2*n2) + u3**2*v1**2*(a22**4 - 3*a22**3*a33 + 3*a22**2*a33**2 - a22*
a33**3) + u3**2*v2**2*(a22**4 - 3*a22**3*a33 + 3*a22**2*a33**2 - a22*a33**3) + 
u3**2*v3**2*(a22**4 - 3*a22**3*a33 + 3*a22**2*a33**2 - a22*a33**3) + u3*v1**2*( 
- a22**3*n3 + 2*a22**2*a33*n3 - a22*a33**2*n3) + u3*v2**2*( - a22**3*n3 + 2*a22
**2*a33*n3 - a22*a33**2*n3) + u3*v2*v3*(a22**3*n2 - 2*a22**2*a33*n2 + a22*a33**2
*n2) + u3*v3**2*( - a22**3*n3 + 2*a22**2*a33*n3 - a22*a33**2*n3) + v1**2*v2*( - 
1/2*a22**2*b33*n2 + a22*a33*b33*n2 - 1/2*a33**2*b33*n2) + v2**3*( - 1/2*a22**2*
b33*n2 + a22*a33*b33*n2 - 1/2*a33**2*b33*n2) + v2*v3**2*( - 1/2*a22**2*b33*n2 + 
a22*a33*b33*n2 - 1/2*a33**2*b33*n2)$

FI=u2*( - a22**3*n2 + 2*a22**2*a33*n2 - a22*a33**2*n2) + u3**2*(a22**4 - 3*a22**
3*a33 + 3*a22**2*a33**2 - a22*a33**3) + u3*( - a22**3*n3 + 2*a22**2*a33*n3 - a22
*a33**2*n3) + v2*( - 1/2*a22**2*b33*n2 + a22*a33*b33*n2 - 1/2*a33**2*b33*n2)$