Solution 3 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

                                  2
      - a22*b33*n1*n3*r15 - b33*n1 *n3*r29
r10=---------------------------------------
                 2   2      2   2
              a22 *n1  - a22 *n3


r11=0


         1            2        1            2             3
      - ---*a22*b33*n1 *r15 - ---*a22*b33*n3 *r15 - b33*n1 *r29
         2                     2
r12=------------------------------------------------------------
                           2   2      2   2
                        a22 *n1  - a22 *n3


     n3*r15
r13=--------
       n1


r14=0


         1         2           1     2   2
      - ---*a22*b33 *n1*r15 - ---*b33 *n1 *r29
         4                     4
r20=-------------------------------------------
                   2   2      2   2
                a22 *n1  - a22 *n3


r21=0


r23=0


r24=0


         1         2           1     2   2
      - ---*a22*b33 *n1*r15 - ---*b33 *n1 *r29
         4                     4
r25=-------------------------------------------
                   2   2      2   2
                a22 *n1  - a22 *n3


                            2
     a22*b33*n1*r15 + b33*n1 *r29
r26=------------------------------
                2         2
          a22*n1  - a22*n3


r27=0


      - a22*b33*n3*r15 - b33*n1*n3*r29
r28=-----------------------------------
                   2         2
             a22*n1  - a22*n3


r210=0


r212=0


r213=0


                     2
      a22*n1*r15 + n1 *r29
r214=----------------------
             2     2
           n1  - n3


r215=0


r216=0


                                2
       - a22*b33*n1*r15 - b33*n1 *r29
r217=---------------------------------
                   2         2
             a22*n1  - a22*n3


       - 2*a22*n3*r15 - 2*n1*n3*r29
r218=-------------------------------
                  2     2
                n1  - n3


r219=0


r30=0


r31=0


r32=0


r33=0


         1
      - ---*b33*n1*r425
         2
r34=--------------------
               2
            a22


r35=0


         1
      - ---*b33*n1*r425
         2
r36=--------------------
               2
            a22


r37=0


r38=0


         1
      - ---*b33*n1*r425
         2
r39=--------------------
               2
            a22


       - n3*r425
r310=------------
         a22


r311=0


       - n3*r425
r312=------------
         a22


          1
       - ---*b33*n1*r488
          2
r313=--------------------
                2
             a22


r314=0


       - n3*r425
r315=------------
         a22


       - n3*r488
r316=------------
         a22


r317=0


      a22*b33*r15 + b33*n1*r29
r318=--------------------------
               2     2
             n1  - n3


           2
      2*a22 *n3*r15 + 2*a22*n1*n3*r29
r319=---------------------------------
                 3        2
               n1  - n1*n3


r320=0


r321=0


r322=0


r323=0


          1
       - ---*b33*n1*r488
          2
r324=--------------------
                2
             a22


r325=0


r326=0


       - n3*r488
r327=------------
         a22


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


       - n1*r425
r335=------------
         a22


r336=0


       - n1*r425
r337=------------
         a22


r338=0


r339=0


                        1
       - a22*n1*r425 - ---*b33*n1*r488
                        2
r340=----------------------------------
                       2
                    a22


       - n1*r488
r341=------------
         a22


r342=0


       - n3*r488
r343=------------
         a22


           2
      2*a22 *r15 + 2*a22*n1*r29
r344=---------------------------
                2     2
              n1  - n3


r345=0


       - n1*r488
r346=------------
         a22


r347=0


r348=0


r349=0


r350=0


r351=0


       - n1*r488
r352=------------
         a22


r353=0


r354=0


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r426=0


r427=r425


r428=0


r429=0


r430=r425


r431=r488


r432=0


r433=0


r435=0


r436=0


r437=0


r439=0


r440=0


r441=0


r442=0


r443=0


r444=0


r445=0


r446=0


r447=0


r448=0


r449=0


r450=0


r451=0


r452=r488


r453=0


r454=0


r455=0


r456=0


r458=0


r459=0


r460=0


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r489=0


r490=0


r491=0


r492=0


r493=0


r494=0


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


     - b33*n3
m3=-----------
       a22


m2=0


        1
     - ---*b33*n1
        2
m1=---------------
         a22


n2=0


         1     2
      - ---*b33
         4
c33=-------------
         a22


c23=0


c22=0


c13=0


c12=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33=0


a23=0


a13=0


a12=0


a11=a22


            3          2
       - a22 *r15 - a22 *n1*r29
r434=---------------------------
              3        2
            n1  - n1*n3


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r29, r15, r425, r488, n3, b33, n1, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{n1,a22}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - a22,
a12,
a13,
a23,
a33,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
c11,
c12,
c13,
c22,
c23,
a22*c33 + 1/4*b33**2,
n2,
a22*m1 + 1/2*b33*n1,
m2,
a22*m3 + b33*n3}$

The system of equations related to the Hamiltonian HAM:

                                                         1
                                                      - ---*v1*b33*n1
      2                 2                                2
HAM=u1 *a22 + u1*n1 + u2 *a22 + u3*v3*b33 + u3*n3 + ------------------
                                                           a22

            1    2    2
         - ---*v3 *b33
            4                - v3*b33*n3
     + ----------------- + --------------
              a22               a22

has apart from the Hamiltonian and Casimirs the following 4 first integrals: 

        2                                    2       2
FI= - u1 *v1*a22*n1 - u1*u2*v2*a22*n1 + u1*u3 *v1*a22  - u1*u3*v1*a22*n3

                         1       2               2       2
    - u1*u3*v3*a22*n1 - ---*u1*v1 *b33*n1 + u2*u3 *v2*a22  - u2*u3*v2*a22*n3
                         2

       1                      3       2     2              1
    - ---*u2*v1*v2*b33*n1 + u3 *v3*a22  - u3 *v3*a22*n3 - ---*u3*v1*v3*b33*n1
       2                                                   2

  = a product of the elements of: {u1*v1 + u2*v2 + u3*v3,

                    2    2                1
    - u1*a22*n1 + u3 *a22  - u3*a22*n3 - ---*v1*b33*n1}
                                          2

{HAM,FI} = 0



           2               2               2            2   2    2
FI= - u1*v1 *a22*n1 - u1*v2 *a22*n1 - u1*v3 *a22*n1 + u3 *v1 *a22

        2   2    2     2   2    2        2               2
    + u3 *v2 *a22  + u3 *v3 *a22  - u3*v1 *a22*n3 - u3*v2 *a22*n3

           2           1    3           1       2           1       2
    - u3*v3 *a22*n3 - ---*v1 *b33*n1 - ---*v1*v2 *b33*n1 - ---*v1*v3 *b33*n1
                       2                2                   2

                                     2     2     2
  = a product of the elements of: {v1  + v2  + v3 ,

                    2    2                1
    - u1*a22*n1 + u3 *a22  - u3*a22*n3 - ---*v1*b33*n1}
                                          2

{HAM,FI} = 0



          2    3                 2                         2
FI=2*u1*u3 *a22 *n1 - 2*u1*u3*a22 *n1*n3 - u1*v1*a22*b33*n1

                3            2      2    2   2     4    4       3    3
    + u1*(a22*n1  - a22*n1*n3 ) + u2 *a22 *n1  - u3 *a22  + 2*u3 *a22 *n3

        2       2                                                2
    + u3 *v1*a22 *b33*n1 - u3*v1*a22*b33*n1*n3 + u3*v3*a22*b33*n1

                2            3     1    2    2   2
    + u3*(a22*n1 *n3 - a22*n3 ) - ---*v1 *b33 *n1
                                   4

              1        3    1           2     1    2    2   2            2
    + v1*( - ---*b33*n1  - ---*b33*n1*n3 ) - ---*v3 *b33 *n1  - v3*b33*n1 *n3
              2             2                 4

which the program can not factorize further.

{HAM,FI} = 0



          2    3                 2                         2     2    2   2
FI=2*u1*u3 *a22 *n1 - 2*u1*u3*a22 *n1*n3 - u1*v1*a22*b33*n1  + u2 *a22 *n1

        4    4       3    3        2       2            2     2   2      2   2
    - u3 *a22  + 2*u3 *a22 *n3 + u3 *v1*a22 *b33*n1 + u3 *(a22 *n1  - a22 *n3 )

                                            2    1    2    2   2            3
    - u3*v1*a22*b33*n1*n3 + u3*v3*a22*b33*n1  - ---*v1 *b33 *n1  - v1*b33*n1
                                                 4

       1    2    2   2            2
    - ---*v3 *b33 *n1  - v3*b33*n1 *n3
       4

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a22 + u1*n1 + u2**2*a22 + u3*v3*b33 + u3*n3 + ( - 1/2*v1*b33*n1)/a22 +
 ( - 1/4*v3**2*b33**2)/a22 + ( - v3*b33*n3)/a22$

FI= - u1**2*v1*a22*n1 - u1*u2*v2*a22*n1 + u1*u3**2*v1*a22**2 - u1*u3*v1*a22*n3 -
 u1*u3*v3*a22*n1 - 1/2*u1*v1**2*b33*n1 + u2*u3**2*v2*a22**2 - u2*u3*v2*a22*n3 - 
1/2*u2*v1*v2*b33*n1 + u3**3*v3*a22**2 - u3**2*v3*a22*n3 - 1/2*u3*v1*v3*b33*n1$

FI= - u1*v1**2*a22*n1 - u1*v2**2*a22*n1 - u1*v3**2*a22*n1 + u3**2*v1**2*a22**2 +
 u3**2*v2**2*a22**2 + u3**2*v3**2*a22**2 - u3*v1**2*a22*n3 - u3*v2**2*a22*n3 - 
u3*v3**2*a22*n3 - 1/2*v1**3*b33*n1 - 1/2*v1*v2**2*b33*n1 - 1/2*v1*v3**2*b33*n1$

FI=2*u1*u3**2*a22**3*n1 - 2*u1*u3*a22**2*n1*n3 - u1*v1*a22*b33*n1**2 + u1*(a22*
n1**3 - a22*n1*n3**2) + u2**2*a22**2*n1**2 - u3**4*a22**4 + 2*u3**3*a22**3*n3 + 
u3**2*v1*a22**2*b33*n1 - u3*v1*a22*b33*n1*n3 + u3*v3*a22*b33*n1**2 + u3*(a22*n1
**2*n3 - a22*n3**3) - 1/4*v1**2*b33**2*n1**2 + v1*( - 1/2*b33*n1**3 - 1/2*b33*n1
*n3**2) - 1/4*v3**2*b33**2*n1**2 - v3*b33*n1**2*n3$

FI=2*u1*u3**2*a22**3*n1 - 2*u1*u3*a22**2*n1*n3 - u1*v1*a22*b33*n1**2 + u2**2*a22
**2*n1**2 - u3**4*a22**4 + 2*u3**3*a22**3*n3 + u3**2*v1*a22**2*b33*n1 + u3**2*(
a22**2*n1**2 - a22**2*n3**2) - u3*v1*a22*b33*n1*n3 + u3*v3*a22*b33*n1**2 - 1/4*
v1**2*b33**2*n1**2 - v1*b33*n1**3 - 1/4*v3**2*b33**2*n1**2 - v3*b33*n1**2*n3$