Solution 1 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2                  2      2
0=a11  - 2*a11*a22 + a22  + a23


Expressions

The solution is given through the following expressions:

         1     3                5     2    2            1     2    2
r10=( - ---*a11 *a22*b33*r13 + ---*a11 *a22 *b33*r13 + ---*a11 *a23 *b33*r13
         2                      4                       4

               3            1             2            1     4
      - a11*a22 *b33*r13 - ---*a11*a22*a23 *b33*r13 + ---*a22 *b33*r13
                            2                          4

         1     2    2              3    2
      + ---*a22 *a23 *b33*r13)/(a11 *a23 )
         4


         1     3    2            1     3    2            3     2    3
r11=( - ---*a11 *a22 *b33*r13 - ---*a11 *a23 *b33*r13 + ---*a11 *a22 *b33*r13
         4                       4                       4

         1     2        2            3         4
      + ---*a11 *a22*a23 *b33*r13 - ---*a11*a22 *b33*r13
         4                           4

         1         2    2            1     5            1     3    2
      - ---*a11*a22 *a23 *b33*r13 + ---*a22 *b33*r13 + ---*a22 *a23 *b33*r13)/(
         4                           4                  4

      3    3
   a11 *a23 )


r12=0


      - a11*r13 + a22*r13
r14=----------------------
             a23


r15=0


        1     3                 3    2       3     2    2
m2=( - ---*a11 *a22*b33*n3 - a11 *a23 *m3 + ---*a11 *a22 *b33*n3
        2                                    2

          2        2       3         3           1             2
     + a11 *a22*a23 *m3 - ---*a11*a22 *b33*n3 - ---*a11*a22*a23 *b33*n3
                           2                     2

        1     4           1     2    2             2    3
     + ---*a22 *b33*n3 + ---*a22 *a23 *b33*n3)/(a11 *a23 )
        2                 2


m1=0


     - a11*n3 + a22*n3
n2=--------------------
           a23


n1=0


           6    4        1      5    4    2    1     5    2    2    2
c23=( - a11 *a23 *c33 - ----*a11 *a22 *b33  - ---*a11 *a22 *a23 *b33
                         16                    8

           5        4        1      5    4    2    5      4    5    2
      + a11 *a22*a23 *c33 - ----*a11 *a23 *b33  + ----*a11 *a22 *b33
                             16                    16

         3     4    3    2    2    1      4        4    2    5     3    6    2
      + ---*a11 *a22 *a23 *b33  + ----*a11 *a22*a23 *b33  - ---*a11 *a22 *b33
         8                         16                        8

         1     3    4    2    2    1     3    2    4    2    5     2    7    2
      - ---*a11 *a22 *a23 *b33  - ---*a11 *a22 *a23 *b33  + ---*a11 *a22 *b33
         2                         8                         8

         1     2    5    2    2    1     2    3    4    2    5          8    2
      + ---*a11 *a22 *a23 *b33  + ---*a11 *a22 *a23 *b33  - ----*a11*a22 *b33
         2                         8                         16

         3         6    2    2    1          4    4    2    1      9    2
      - ---*a11*a22 *a23 *b33  - ----*a11*a22 *a23 *b33  + ----*a22 *b33
         8                        16                        16

         1     7    2    2    1      5    4    2      5    5
      + ---*a22 *a23 *b33  + ----*a22 *a23 *b33 )/(a11 *a23 )
         8                    16


        7    4        1      6    4    2    1     6    2    2    2
c22=(a11 *a23 *c33 + ----*a11 *a22 *b33  + ---*a11 *a22 *a23 *b33
                      16                    8

             6        4        1      6    4    2    3     5    5    2
      - 2*a11 *a22*a23 *c33 + ----*a11 *a23 *b33  - ---*a11 *a22 *b33
                               16                    8

         1     5    3    2    2      5    2    4        1     5        4    2
      - ---*a11 *a22 *a23 *b33  + a11 *a22 *a23 *c33 - ---*a11 *a22*a23 *b33
         4                                              8

         15     4    6    2    3      4    4    2    2
      + ----*a11 *a22 *b33  - ----*a11 *a22 *a23 *b33
         16                    16

         1      4    2    4    2    1      4    6    2    5     3    7    2
      + ----*a11 *a22 *a23 *b33  - ----*a11 *a23 *b33  - ---*a11 *a22 *b33
         16                         16                    4

         3     3    5    2    2    1     3    3    4    2    15     2    8    2
      + ---*a11 *a22 *a23 *b33  + ---*a11 *a22 *a23 *b33  + ----*a11 *a22 *b33
         4                         2                         16

         1     2    6    2    2    17     2    4    4    2
      - ---*a11 *a22 *a23 *b33  - ----*a11 *a22 *a23 *b33
         2                         16

         1     2    2    6    2    3         9    2    5         5    4    2
      - ---*a11 *a22 *a23 *b33  - ---*a11*a22 *b33  + ---*a11*a22 *a23 *b33
         8                         8                   8

         1         3    6    2    1      10    2    1      8    2    2
      + ---*a11*a22 *a23 *b33  + ----*a22  *b33  + ----*a22 *a23 *b33
         4                        16                16

         1      6    4    2    1      4    6    2      5    6
      - ----*a22 *a23 *b33  - ----*a22 *a23 *b33 )/(a11 *a23 )
         16                    16


c13=0


c12=0


                         2          2
      - a11*a22*b33 + a22 *b33 + a23 *b33
b32=--------------------------------------
                   a11*a23


b31=0


b21=0


         1     2    2        1     2    2              3        1     4
b11=( - ---*a11 *a22 *b33 + ---*a11 *a23 *b33 + a11*a22 *b33 - ---*a22 *b33
         2                   2                                  2

         1     2    2          2    2
      - ---*a22 *a23 *b33)/(a11 *a23 )
         2


        2                2
     a11  - a11*a22 - a23
a33=-----------------------
           a11 - a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r13, c33, m3, n3, b33, a11, a22, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{r13,

 a11,

 a22,

 a23,

 a11 - a22,

         2                 3         3                 3
 {a11*a22 *a23*m3 - a11*a23 *m3 - a22 *a23*m3 - a22*a23 *m3,

  m3,

  a11*n3 - a22*n3,

  n3}}


Relevance for the application:

Modulo the following equation:

     2                  2      2
0=a11  - 2*a11*a22 + a22  + a23


the system of equations related to the Hamiltonian HAM:

       2     7    6      6        6               1     6    2    4
HAM=(u1 *(a11 *a23  - a11 *a22*a23 ) + u1*v1*( - ---*a11 *a22 *a23 *b33
                                                  2

            1     6    6        3     5    3    4        1     5        6
         + ---*a11 *a23 *b33 + ---*a11 *a22 *a23 *b33 - ---*a11 *a22*a23 *b33
            2                   2                        2

            3     4    4    4        1     4    2    6
         - ---*a11 *a22 *a23 *b33 - ---*a11 *a22 *a23 *b33
            2                        2

            1     3    5    4        1     3    3    6
         + ---*a11 *a22 *a23 *b33 + ---*a11 *a22 *a23 *b33)
            2                        2

          2     6        6      5    2    6
      + u2 *(a11 *a22*a23  - a11 *a22 *a23 )

                    6    7        5        7
      + u2*u3*(2*a11 *a23  - 2*a11 *a22*a23 )

                  7    5           6        5         5    2    5
      + u2*( - a11 *a23 *n3 + 2*a11 *a22*a23 *n3 - a11 *a22 *a23 *n3)

          2     7    6      6        6      5    8
      + u3 *(a11 *a23  - a11 *a22*a23  - a11 *a23 ) + u3*v2*(

              6        5            5    2    5          5    7
         - a11 *a22*a23 *b33 + 2*a11 *a22 *a23 *b33 + a11 *a23 *b33

              4    3    5          4        7
         - a11 *a22 *a23 *b33 - a11 *a22*a23 *b33)

                  6    6          5        6
      + u3*v3*(a11 *a23 *b33 - a11 *a22*a23 *b33)

               6    6         5        6         2     8    4
      + u3*(a11 *a23 *n3 - a11 *a22*a23 *n3) + v2 *(a11 *a23 *c33

            1      7    4    2    1     7    2    2    2        7        4
         + ----*a11 *a22 *b33  + ---*a11 *a22 *a23 *b33  - 3*a11 *a22*a23 *c33
            16                    8

            1      7    4    2    7      6    5    2    3     6    3    2    2
         + ----*a11 *a23 *b33  - ----*a11 *a22 *b33  - ---*a11 *a22 *a23 *b33
            16                    16                    8

                6    2    4        3      6        4    2    21     5    6    2
         + 3*a11 *a22 *a23 *c33 - ----*a11 *a22*a23 *b33  + ----*a11 *a22 *b33
                                   16                        16

            1      5    4    2    2      5    3    4
         + ----*a11 *a22 *a23 *b33  - a11 *a22 *a23 *c33
            16

            3      5    2    4    2    1      5    6    2    35     4    7    2
         + ----*a11 *a22 *a23 *b33  - ----*a11 *a23 *b33  - ----*a11 *a22 *b33
            16                         16                    16

            15     4    5    2    2    7      4    3    4    2
         + ----*a11 *a22 *a23 *b33  + ----*a11 *a22 *a23 *b33
            16                         16

            1      4        6    2    35     3    8    2
         + ----*a11 *a22*a23 *b33  + ----*a11 *a22 *b33
            16                        16

            5     3    6    2    2    25     3    4    4    2
         - ---*a11 *a22 *a23 *b33  - ----*a11 *a22 *a23 *b33
            4                         16

            1     3    2    6    2    21     2    9    2
         - ---*a11 *a22 *a23 *b33  - ----*a11 *a22 *b33
            8                         16

            1     2    7    2    2    27     2    5    4    2
         + ---*a11 *a22 *a23 *b33  + ----*a11 *a22 *a23 *b33
            2                         16

            3     2    3    6    2    7          10    2
         + ---*a11 *a22 *a23 *b33  + ----*a11*a22  *b33
            8                         16

            1          8    2    2    11         6    4    2
         + ----*a11*a22 *a23 *b33  - ----*a11*a22 *a23 *b33
            16                        16

            5          4    6    2    1      11    2    1      9    2    2
         - ----*a11*a22 *a23 *b33  - ----*a22  *b33  - ----*a22 *a23 *b33
            16                        16                16

            1      7    4    2    1      5    6    2
         + ----*a22 *a23 *b33  + ----*a22 *a23 *b33 ) + v2*v3*(
            16                    16

                7    5        1     6    4        2    1     6    2    3    2
         - 2*a11 *a23 *c33 - ---*a11 *a22 *a23*b33  - ---*a11 *a22 *a23 *b33
                              8                        4

                6        5        1     6    5    2    3     5    5        2
         + 4*a11 *a22*a23 *c33 - ---*a11 *a23 *b33  + ---*a11 *a22 *a23*b33
                                  8                    4

              5    3    3    2        5    2    5        1     5        5    2
         + a11 *a22 *a23 *b33  - 2*a11 *a22 *a23 *c33 + ---*a11 *a22*a23 *b33
                                                         4

            15     4    6        2    7     4    4    3    2
         - ----*a11 *a22 *a23*b33  - ---*a11 *a22 *a23 *b33
            8                         4

            3     4    2    5    2    5     3    7        2
         - ---*a11 *a22 *a23 *b33  + ---*a11 *a22 *a23*b33
            8                         2

                3    5    3    2    1     3    3    5    2
         + 2*a11 *a22 *a23 *b33  + ---*a11 *a22 *a23 *b33
                                    2

            15     2    8        2    7     2    6    3    2
         - ----*a11 *a22 *a23*b33  - ---*a11 *a22 *a23 *b33
            8                         4

            3     2    4    5    2    3         9        2          7    3    2
         - ---*a11 *a22 *a23 *b33  + ---*a11*a22 *a23*b33  + a11*a22 *a23 *b33
            8                         4

            1         5    5    2    1     10        2    1     8    3    2
         + ---*a11*a22 *a23 *b33  - ---*a22  *a23*b33  - ---*a22 *a23 *b33
            4                        8                    4

            1     6    5    2            1     7        3             7    5
         - ---*a22 *a23 *b33 ) + v2*( - ---*a11 *a22*a23 *b33*n3 - a11 *a23 *m3
            8                            2

                6    2    3               6        5
         + 2*a11 *a22 *a23 *b33*n3 + 2*a11 *a22*a23 *m3

                5    3    3             5    2    5
         - 3*a11 *a22 *a23 *b33*n3 - a11 *a22 *a23 *m3

            1     5        5               4    4    3
         - ---*a11 *a22*a23 *b33*n3 + 2*a11 *a22 *a23 *b33*n3
            2

              4    2    5           1     3    5    3
         + a11 *a22 *a23 *b33*n3 - ---*a11 *a22 *a23 *b33*n3
                                    2

            1     3    3    5             2     6    6          5        6
         - ---*a11 *a22 *a23 *b33*n3) + v3 *(a11 *a23 *c33 - a11 *a22*a23 *c33)
            2

               6    6         5        6          6    6      5        6
      + v3*(a11 *a23 *m3 - a11 *a22*a23 *m3))/(a11 *a23  - a11 *a22*a23 )

has apart from the Hamiltonian and Casimirs only the following first integral: 

             4    2      3        2          3    3           1     3    2
FI=u2*( - a11 *a23  + a11 *a22*a23 ) + u3*a11 *a23  + v2*( - ---*a11 *a22 *b33
                                                              4

          1     3    2        3     2    3        1     2        2
       - ---*a11 *a23 *b33 + ---*a11 *a22 *b33 + ---*a11 *a22*a23 *b33
          4                   4                   4

          3         4        1         2    2        1     5
       - ---*a11*a22 *b33 - ---*a11*a22 *a23 *b33 + ---*a22 *b33
          4                  4                       4

          1     3    2                1     3
       + ---*a22 *a23 *b33) + v3*( - ---*a11 *a22*a23*b33
          4                           2

          5     2    2            1     2    3              3
       + ---*a11 *a22 *a23*b33 + ---*a11 *a23 *b33 - a11*a22 *a23*b33
          4                       4

          1             3        1     4            1     2    3
       - ---*a11*a22*a23 *b33 + ---*a22 *a23*b33 + ---*a22 *a23 *b33)
          2                      4                  4

{HAM,FI} = 0





And again in machine readable form:



HAM=(u1**2*(a11**7*a23**6 - a11**6*a22*a23**6) + u1*v1*( - 1/2*a11**6*a22**2*a23
**4*b33 + 1/2*a11**6*a23**6*b33 + 3/2*a11**5*a22**3*a23**4*b33 - 1/2*a11**5*a22*
a23**6*b33 - 3/2*a11**4*a22**4*a23**4*b33 - 1/2*a11**4*a22**2*a23**6*b33 + 1/2*
a11**3*a22**5*a23**4*b33 + 1/2*a11**3*a22**3*a23**6*b33) + u2**2*(a11**6*a22*a23
**6 - a11**5*a22**2*a23**6) + u2*u3*(2*a11**6*a23**7 - 2*a11**5*a22*a23**7) + u2
*( - a11**7*a23**5*n3 + 2*a11**6*a22*a23**5*n3 - a11**5*a22**2*a23**5*n3) + u3**
2*(a11**7*a23**6 - a11**6*a22*a23**6 - a11**5*a23**8) + u3*v2*( - a11**6*a22*a23
**5*b33 + 2*a11**5*a22**2*a23**5*b33 + a11**5*a23**7*b33 - a11**4*a22**3*a23**5*
b33 - a11**4*a22*a23**7*b33) + u3*v3*(a11**6*a23**6*b33 - a11**5*a22*a23**6*b33)
 + u3*(a11**6*a23**6*n3 - a11**5*a22*a23**6*n3) + v2**2*(a11**8*a23**4*c33 + 1/
16*a11**7*a22**4*b33**2 + 1/8*a11**7*a22**2*a23**2*b33**2 - 3*a11**7*a22*a23**4*
c33 + 1/16*a11**7*a23**4*b33**2 - 7/16*a11**6*a22**5*b33**2 - 3/8*a11**6*a22**3*
a23**2*b33**2 + 3*a11**6*a22**2*a23**4*c33 - 3/16*a11**6*a22*a23**4*b33**2 + 21/
16*a11**5*a22**6*b33**2 + 1/16*a11**5*a22**4*a23**2*b33**2 - a11**5*a22**3*a23**
4*c33 + 3/16*a11**5*a22**2*a23**4*b33**2 - 1/16*a11**5*a23**6*b33**2 - 35/16*a11
**4*a22**7*b33**2 + 15/16*a11**4*a22**5*a23**2*b33**2 + 7/16*a11**4*a22**3*a23**
4*b33**2 + 1/16*a11**4*a22*a23**6*b33**2 + 35/16*a11**3*a22**8*b33**2 - 5/4*a11
**3*a22**6*a23**2*b33**2 - 25/16*a11**3*a22**4*a23**4*b33**2 - 1/8*a11**3*a22**2
*a23**6*b33**2 - 21/16*a11**2*a22**9*b33**2 + 1/2*a11**2*a22**7*a23**2*b33**2 + 
27/16*a11**2*a22**5*a23**4*b33**2 + 3/8*a11**2*a22**3*a23**6*b33**2 + 7/16*a11*
a22**10*b33**2 + 1/16*a11*a22**8*a23**2*b33**2 - 11/16*a11*a22**6*a23**4*b33**2 
- 5/16*a11*a22**4*a23**6*b33**2 - 1/16*a22**11*b33**2 - 1/16*a22**9*a23**2*b33**
2 + 1/16*a22**7*a23**4*b33**2 + 1/16*a22**5*a23**6*b33**2) + v2*v3*( - 2*a11**7*
a23**5*c33 - 1/8*a11**6*a22**4*a23*b33**2 - 1/4*a11**6*a22**2*a23**3*b33**2 + 4*
a11**6*a22*a23**5*c33 - 1/8*a11**6*a23**5*b33**2 + 3/4*a11**5*a22**5*a23*b33**2 
+ a11**5*a22**3*a23**3*b33**2 - 2*a11**5*a22**2*a23**5*c33 + 1/4*a11**5*a22*a23
**5*b33**2 - 15/8*a11**4*a22**6*a23*b33**2 - 7/4*a11**4*a22**4*a23**3*b33**2 - 3
/8*a11**4*a22**2*a23**5*b33**2 + 5/2*a11**3*a22**7*a23*b33**2 + 2*a11**3*a22**5*
a23**3*b33**2 + 1/2*a11**3*a22**3*a23**5*b33**2 - 15/8*a11**2*a22**8*a23*b33**2 
- 7/4*a11**2*a22**6*a23**3*b33**2 - 3/8*a11**2*a22**4*a23**5*b33**2 + 3/4*a11*
a22**9*a23*b33**2 + a11*a22**7*a23**3*b33**2 + 1/4*a11*a22**5*a23**5*b33**2 - 1/
8*a22**10*a23*b33**2 - 1/4*a22**8*a23**3*b33**2 - 1/8*a22**6*a23**5*b33**2) + v2
*( - 1/2*a11**7*a22*a23**3*b33*n3 - a11**7*a23**5*m3 + 2*a11**6*a22**2*a23**3*
b33*n3 + 2*a11**6*a22*a23**5*m3 - 3*a11**5*a22**3*a23**3*b33*n3 - a11**5*a22**2*
a23**5*m3 - 1/2*a11**5*a22*a23**5*b33*n3 + 2*a11**4*a22**4*a23**3*b33*n3 + a11**
4*a22**2*a23**5*b33*n3 - 1/2*a11**3*a22**5*a23**3*b33*n3 - 1/2*a11**3*a22**3*a23
**5*b33*n3) + v3**2*(a11**6*a23**6*c33 - a11**5*a22*a23**6*c33) + v3*(a11**6*a23
**6*m3 - a11**5*a22*a23**6*m3))/(a11**6*a23**6 - a11**5*a22*a23**6)$

FI=u2*( - a11**4*a23**2 + a11**3*a22*a23**2) + u3*a11**3*a23**3 + v2*( - 1/4*a11
**3*a22**2*b33 - 1/4*a11**3*a23**2*b33 + 3/4*a11**2*a22**3*b33 + 1/4*a11**2*a22*
a23**2*b33 - 3/4*a11*a22**4*b33 - 1/4*a11*a22**2*a23**2*b33 + 1/4*a22**5*b33 + 1
/4*a22**3*a23**2*b33) + v3*( - 1/2*a11**3*a22*a23*b33 + 5/4*a11**2*a22**2*a23*
b33 + 1/4*a11**2*a23**3*b33 - a11*a22**3*a23*b33 - 1/2*a11*a22*a23**3*b33 + 1/4*
a22**4*a23*b33 + 1/4*a22**2*a23**3*b33)$