Solution 14 to problem over
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Expressions
The solution is given through the following expressions:
r11=0
r12=0
r14=0
r15=0
r21=0
r22=0
r23=0
r24=0
r27=0
r28=0
r210=0
r213=0
r215=0
r216= - r212
r217=0
r218=0
r219=0
r220=r214
r31=0
r33=0
r34=0
r35=0
r36=0
r37=r32
r38=0
r39=0
r311=0
r312=r315
r313=0
r314=0
r317=0
r318=0
r320=0
r321=r338
r322=0
r323= - r336
r324=0
r325=0
r326=0
r328= - r342
r329=0
r330=r350
r331=0
r332=0
r333=r353
r334=0
r335=0
r337=0
r339=0
r340=0
r341=0
r343=r327
r344=0
r345=0
r346=0
r347=0
r348=0
r349=0
r351=0
r352=0
r354=0
r355=0
m3=0
m2=0
m1=0
n2=0
n1=0
c33=0
c23=0
c22=0
c13=0
c12=0
c11=0
b33=0
b32=0
b31=0
b23=0
b22=0
b21=0
b13=0
b12=0
b11=0
a23=0
a22=0
a13=0
a12=0
a11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r30, r20, r10, r32, r214, r13, r212, r315, r350, r316,
r310, r26, r336, r338, r353, r342, r327, r319, n3, a33
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{a33}
Relevance for the application:
The new Hamiltonian in form of a list of vanishing expressions:
{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
n1,
n2,
m1,
m2,
m3}$
The system of equations related to the Hamiltonian HAM:
2
HAM=u3 *a33 + u3*n3
has apart from the Hamiltonian and Casimirs the following 18 first integrals:
3
FI=u3
= a product of the elements of: {u3,u3,u3}
{HAM,FI} = 0
FI=u1*u3*v1 + u2*u3*v2
= a product of the elements of: {u3,u1*v1 + u2*v2}
{HAM,FI} = 0
FI=u1*u3*v2 - u2*u3*v1
= a product of the elements of: {u3,u1*v2 - u2*v1}
{HAM,FI} = 0
2 2
FI=u1 *u3 + u2 *u3
= a product of the elements of: {u3,u1 - i*u2,u1 + i*u2}
{HAM,FI} = 0
FI=u1*v1*v3 + u2*v2*v3
= a product of the elements of: {v3,u1*v1 + u2*v2}
{HAM,FI} = 0
FI=u1*v2*v3 - u2*v1*v3
= a product of the elements of: {v3,u1*v2 - u2*v1}
{HAM,FI} = 0
FI=u3*v3
= a product of the elements of: {v3,u3}
{HAM,FI} = 0
2
FI=u3*v3
= a product of the elements of: {v3,v3,u3}
{HAM,FI} = 0
2
FI=u3 *v3
= a product of the elements of: {u3,u3,v3}
{HAM,FI} = 0
2 2
FI=u1 *v3 + u2 *v3
= a product of the elements of: {v3,u1 - i*u2,u1 + i*u2}
{HAM,FI} = 0
2 2
FI=u3*v1 + u3*v2
= a product of the elements of: {v1 - i*v2,v1 + i*v2,u3}
{HAM,FI} = 0
FI= - u1*v2 + u2*v1
which the program can not factorize further.
{HAM,FI} = 0
FI=u3
which the program can not factorize further.
{HAM,FI} = 0
2 2
FI=u1 + u2
= a product of the elements of: {u1 - i*u2,u1 + i*u2}
{HAM,FI} = 0
2 2
FI=v1 *v3 + v2 *v3
= a product of the elements of: {v3,v1 - i*v2,v1 + i*v2}
{HAM,FI} = 0
FI=v3
which the program can not factorize further.
{HAM,FI} = 0
2
FI=v3
= a product of the elements of: {v3,v3}
{HAM,FI} = 0
3
FI=v3
= a product of the elements of: {v3,v3,v3}
{HAM,FI} = 0
And again in machine readable form:
HAM=u3**2*a33 + u3*n3$
FI=u3**3$
FI=u1*u3*v1 + u2*u3*v2$
FI=u1*u3*v2 - u2*u3*v1$
FI=u1**2*u3 + u2**2*u3$
FI=u1*v1*v3 + u2*v2*v3$
FI=u1*v2*v3 - u2*v1*v3$
FI=u3*v3$
FI=u3*v3**2$
FI=u3**2*v3$
FI=u1**2*v3 + u2**2*v3$
FI=u3*v1**2 + u3*v2**2$
FI= - u1*v2 + u2*v1$
FI=u3$
FI=u1**2 + u2**2$
FI=v1**2*v3 + v2**2*v3$
FI=v3$
FI=v3**2$
FI=v3**3$