Solution 14 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r11=0


r12=0


r14=0


r15=0


r21=0


r22=0


r23=0


r24=0


r27=0


r28=0


r210=0


r213=0


r215=0


r216= - r212


r217=0


r218=0


r219=0


r220=r214


r31=0


r33=0


r34=0


r35=0


r36=0


r37=r32


r38=0


r39=0


r311=0


r312=r315


r313=0


r314=0


r317=0


r318=0


r320=0


r321=r338


r322=0


r323= - r336


r324=0


r325=0


r326=0


r328= - r342


r329=0


r330=r350


r331=0


r332=0


r333=r353


r334=0


r335=0


r337=0


r339=0


r340=0


r341=0


r343=r327


r344=0


r345=0


r346=0


r347=0


r348=0


r349=0


r351=0


r352=0


r354=0


r355=0


m3=0


m2=0


m1=0


n2=0


n1=0


c33=0


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r30, r20, r10, r32, r214, r13, r212, r315, r350, r316, 
r310, r26, r336, r338, r353, r342, r327, r319, n3, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
n1,
n2,
m1,
m2,
m3}$

The system of equations related to the Hamiltonian HAM:

      2
HAM=u3 *a33 + u3*n3

has apart from the Hamiltonian and Casimirs the following 18 first integrals: 

     3
FI=u3

  = a product of the elements of: {u3,u3,u3}

{HAM,FI} = 0



FI=u1*u3*v1 + u2*u3*v2

  = a product of the elements of: {u3,u1*v1 + u2*v2}

{HAM,FI} = 0



FI=u1*u3*v2 - u2*u3*v1

  = a product of the elements of: {u3,u1*v2 - u2*v1}

{HAM,FI} = 0



     2        2
FI=u1 *u3 + u2 *u3

  = a product of the elements of: {u3,u1 - i*u2,u1 + i*u2}

{HAM,FI} = 0



FI=u1*v1*v3 + u2*v2*v3

  = a product of the elements of: {v3,u1*v1 + u2*v2}

{HAM,FI} = 0



FI=u1*v2*v3 - u2*v1*v3

  = a product of the elements of: {v3,u1*v2 - u2*v1}

{HAM,FI} = 0



FI=u3*v3

  = a product of the elements of: {v3,u3}

{HAM,FI} = 0



        2
FI=u3*v3

  = a product of the elements of: {v3,v3,u3}

{HAM,FI} = 0



     2
FI=u3 *v3

  = a product of the elements of: {u3,u3,v3}

{HAM,FI} = 0



     2        2
FI=u1 *v3 + u2 *v3

  = a product of the elements of: {v3,u1 - i*u2,u1 + i*u2}

{HAM,FI} = 0



        2        2
FI=u3*v1  + u3*v2

  = a product of the elements of: {v1 - i*v2,v1 + i*v2,u3}

{HAM,FI} = 0



FI= - u1*v2 + u2*v1

which the program can not factorize further.

{HAM,FI} = 0



FI=u3

which the program can not factorize further.

{HAM,FI} = 0



     2     2
FI=u1  + u2

  = a product of the elements of: {u1 - i*u2,u1 + i*u2}

{HAM,FI} = 0



     2        2
FI=v1 *v3 + v2 *v3

  = a product of the elements of: {v3,v1 - i*v2,v1 + i*v2}

{HAM,FI} = 0



FI=v3

which the program can not factorize further.

{HAM,FI} = 0



     2
FI=v3

  = a product of the elements of: {v3,v3}

{HAM,FI} = 0



     3
FI=v3

  = a product of the elements of: {v3,v3,v3}

{HAM,FI} = 0





And again in machine readable form:



HAM=u3**2*a33 + u3*n3$

FI=u3**3$

FI=u1*u3*v1 + u2*u3*v2$

FI=u1*u3*v2 - u2*u3*v1$

FI=u1**2*u3 + u2**2*u3$

FI=u1*v1*v3 + u2*v2*v3$

FI=u1*v2*v3 - u2*v1*v3$

FI=u3*v3$

FI=u3*v3**2$

FI=u3**2*v3$

FI=u1**2*v3 + u2**2*v3$

FI=u3*v1**2 + u3*v2**2$

FI= - u1*v2 + u2*v1$

FI=u3$

FI=u1**2 + u2**2$

FI=v1**2*v3 + v2**2*v3$

FI=v3$

FI=v3**2$

FI=v3**3$