Solution 1 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

         1                    1
      - ---*a11*b33*n3*r29 + ---*a22*b33*n3*r29
         2                    2
r10=--------------------------------------------
                         2
                      a11 *a22


         1
      - ---*b33*n2*r29
         2
r11=-------------------
          a11*a22


                          1
      - a11*b33*n1*r29 + ---*a22*b33*n1*r29
                          2
r12=----------------------------------------
                       2
                    a11 *a22


      - n3*r29
r13=-----------
        a11


      - n2*r29
r14=-----------
        a11


      - n1*r29
r15=-----------
        a11


      1     2    2        1             2        1     2    2
     ---*a11 *b33 *r29 - ---*a11*a22*b33 *r29 + ---*a22 *b33 *r29
      4                   2                      4
r20=--------------------------------------------------------------
                                 2    2
                              a11 *a22


r21=0


      1         2        1         2
     ---*a11*b33 *r29 - ---*a22*b33 *r29
      4                  4
r22=-------------------------------------
                         2
                  a11*a22


r23=0


r24=0


r26=0


r27=0


r28=0


r210=0


r212=0


r213=0


      a11*r29 - a22*r29
r214=-------------------
             a11


r215=0


r216=0


       - a11*b33*r29 + a22*b33*r29
r217=------------------------------
                a11*a22


r218=0


r219=0


        1                1
     - ---*a11*b33*n3 - ---*a22*b33*n3
        2                2
m3=------------------------------------
                 a11*a22


        1
     - ---*b33*n2
        2
m2=---------------
         a22


        1
     - ---*b33*n1
        2
m1=---------------
         a11


         1     2
      - ---*b33
         4
c33=-------------
         a11


c23=0


      1         2    1         2
     ---*a11*b33  - ---*a22*b33
      4              4
c22=-----------------------------
               a11*a22


c13=0


c12=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33=0


a23=0


a13=0


a12=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r29, n2, n1, b33, n3, a11, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{r29,a11,a22,a11 - a22}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a12,
a13,
a23,
a33,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
c11,
c12,
c13,
a11*a22*c22 - 1/4*a11*b33**2 + 1/4*a22*b33**2,
c23,
a11*c33 + 1/4*b33**2,
a11*m1 + 1/2*b33*n1,
a22*m2 + 1/2*b33*n2,
a11*a22*m3 + 1/2*a11*b33*n3 + 1/2*a22*b33*n3}$

The system of equations related to the Hamiltonian HAM:

                                                                 1
                                                              - ---*v1*b33*n1
      2                 2                                        2
HAM=u1 *a11 + u1*n1 + u2 *a22 + u2*n2 + u3*v3*b33 + u3*n3 + ------------------
                                                                   a11

             1         2    1         2         1
            ---*a11*b33  - ---*a22*b33       - ---*v2*b33*n2
         2   4              4                   2
     + v2 *----------------------------- + ------------------
                      a11*a22                     a22

            1    2    2            1                1
         - ---*v3 *b33          - ---*a11*b33*n3 - ---*a22*b33*n3
            4                      2                2
     + ----------------- + v3*------------------------------------
              a11                           a11*a22

has apart from the Hamiltonian and Casimirs only the following first integral: 

                2                  2                  2
FI=u1*v1*( - a11 *a22*b33 + a11*a22 *b33) - u1*a11*a22 *n1

        2     2    2          3              2        2    2    2
    + u2 *(a11 *a22  - a11*a22 ) - u2*a11*a22 *n2 + u3 *a11 *a22

                2                               1     2
    - u3*a11*a22 *n3 + v1*( - a11*a22*b33*n1 + ---*a22 *b33*n1)
                                                2

        2   1     2    2    1             2     1
    + v2 *(---*a11 *b33  - ---*a11*a22*b33 ) - ---*v2*a11*a22*b33*n2
            4               4                   2

        2   1     2    2    1             2    1     2    2
    + v3 *(---*a11 *b33  - ---*a11*a22*b33  + ---*a22 *b33 )
            4               2                  4

              1                    1     2
    + v3*( - ---*a11*a22*b33*n3 + ---*a22 *b33*n3)
              2                    2

                                    1
  = a product of the elements of: {---,
                                    4

                  2                    2                    2
   u1*v1*( - 4*a11 *a22*b33 + 4*a11*a22 *b33) - 4*u1*a11*a22 *n1

        2       2    2            3                2          2    2    2
    + u2 *(4*a11 *a22  - 4*a11*a22 ) - 4*u2*a11*a22 *n2 + 4*u3 *a11 *a22

                  2                                     2
    - 4*u3*a11*a22 *n3 + v1*( - 4*a11*a22*b33*n1 + 2*a22 *b33*n1)

        2     2    2              2
    + v2 *(a11 *b33  - a11*a22*b33 ) - 2*v2*a11*a22*b33*n2

        2     2    2                2      2    2
    + v3 *(a11 *b33  - 2*a11*a22*b33  + a22 *b33 )

                                     2
    + v3*( - 2*a11*a22*b33*n3 + 2*a22 *b33*n3)}

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a11 + u1*n1 + u2**2*a22 + u2*n2 + u3*v3*b33 + u3*n3 + ( - 1/2*v1*b33*
n1)/a11 + v2**2*(1/4*a11*b33**2 - 1/4*a22*b33**2)/(a11*a22) + ( - 1/2*v2*b33*n2)
/a22 + ( - 1/4*v3**2*b33**2)/a11 + v3*( - 1/2*a11*b33*n3 - 1/2*a22*b33*n3)/(a11*
a22)$

FI=u1*v1*( - a11**2*a22*b33 + a11*a22**2*b33) - u1*a11*a22**2*n1 + u2**2*(a11**2
*a22**2 - a11*a22**3) - u2*a11*a22**2*n2 + u3**2*a11**2*a22**2 - u3*a11*a22**2*
n3 + v1*( - a11*a22*b33*n1 + 1/2*a22**2*b33*n1) + v2**2*(1/4*a11**2*b33**2 - 1/4
*a11*a22*b33**2) - 1/2*v2*a11*a22*b33*n2 + v3**2*(1/4*a11**2*b33**2 - 1/2*a11*
a22*b33**2 + 1/4*a22**2*b33**2) + v3*( - 1/2*a11*a22*b33*n3 + 1/2*a22**2*b33*n3)
$