Solution 16 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

     n3*r26
r10=--------
      a33


      - m2*r214 - i*n1*r26
r11=-----------------------
              a33


      - i*m2*r214 + n1*r26
r12=-----------------------
              a33


      - n3*r214
r13=------------
        a33


     i*n1*r214
r14=-----------
        a33


      - n1*r214
r15=------------
        a33


              2
      - a33*m2 *r214 - i*a33*m2*n1*r26 - i*m2*n1*n3*r316
r20=-----------------------------------------------------
                                 2
                           a33*n1


      - m2*r316
r21=------------
        a33


r22=0


      - i*m2*r316
r23=--------------
         a33


r24=0


      - i*n1*r316
r27=--------------
         a33


     n1*r316
r28=---------
       a33


      i*n1*r316
r210=-----------
         a33


       - 2*a33*m2*r214 - i*a33*n1*r26 - i*n1*n3*r316
r212=------------------------------------------------
                          a33*n1


r213=0


       - n1*r316
r215=------------
         a33


      2*a33*m2*r214 + i*a33*n1*r26 + i*n1*n3*r316
r216=---------------------------------------------
                        a33*n1


r217=0


r218=0


r219=0


r220=r214


r30=0


r31=0


       2
     m2 *r316
r32=----------
         2
       n1


r33=0


r34=0


r35=0


r36=0


       2
     m2 *r316
r37=----------
         2
       n1


r38=0


r39=0


r310=0


r311=0


      i*m2*r316
r312=-----------
         n1


r313=0


r314=0


      i*m2*r316
r315=-----------
         n1


r317=0


r318=0


r319=0


r320=0


       - 2*m2*r316
r323=--------------
           n1


r325=0


r326=0


r328= - i*r316


r329=0


r330=r316


r332=0


r333=0


r334=0


r335=0


      2*m2*r316
r336=-----------
         n1


r337=0


r338=0


r339=0


r340=0


r341=0


r342=i*r316


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=r316


r351=0


r352=0


r353=0


r354=0


r355=0


m3=0


m1=i*m2


n2= - i*n1


c33=0


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r214, r26, r316, m2, n3, n1, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{n1,r316,a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
i*n1 + n2,
m1 - i*m2,
m3}$

The system of equations related to the Hamiltonian HAM:

                        2
HAM=u1*n1 - i*u2*n1 + u3 *a33 + u3*n3 + i*v1*m2 + v2*m2

has apart from the Hamiltonian and Casimirs the following 3 first integrals: 

     2          2                    2                                    2
FI=u1 *v3*a33*n1  + i*u1*u3*v2*a33*n1  + 2*u1*v2*v3*a33*m2*n1 + i*u1*v2*n1 *n3

              3     2          2                    2
    - u1*v3*n1  + u2 *v3*a33*n1  - i*u2*u3*v1*a33*n1  - 2*u2*v1*v3*a33*m2*n1

                2                3     2          2          2
    - i*u2*v1*n1 *n3 + i*u2*v3*n1  + u3 *v3*a33*n1  + i*u3*v1 *a33*m2*n1

              3          2                       3     2          2
    + u3*v1*n1  + i*u3*v2 *a33*m2*n1 - i*u3*v2*n1  + v1 *v3*a33*m2

                   2     2          2              2       2
    - i*v1*v3*m2*n1  + v2 *v3*a33*m2  - v2*v3*m2*n1  - i*v3 *m2*n1*n3

which the program can not factorize further.

{HAM,FI} = {n1,

            n1,

            u1*v1 + u2*v2 + u3*v3,

             - i*u1*n1 - u2*n1 + v1*m2 - i*v2*m2,

            a33}



                                                         2          2
FI=i*u1*v2*a33*n1 - i*u2*v1*a33*n1 + u3*v3*a33*n1 + v1*n1  - i*v2*n1

          2
    - i*v3 *a33*m2 + v3*n1*n3

  = a product of the elements of: { - i,

                                                            2        2
    - u1*v2*a33*n1 + u2*v1*a33*n1 + i*u3*v3*a33*n1 + i*v1*n1  + v2*n1

        2
    + v3 *a33*m2 + i*v3*n1*n3}

{HAM,FI} = 0



     2       2                            3     2       2
FI=u1 *a33*n1  + 2*u1*v2*a33*m2*n1 - u1*n1  + u2 *a33*n1  - 2*u2*v1*a33*m2*n1

             3        2                2           2     2       2
    + i*u2*n1  - u3*n1 *n3 - i*v1*m2*n1  - v2*m2*n1  - v3 *a33*m2

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=u1*n1 - i*u2*n1 + u3**2*a33 + u3*n3 + i*v1*m2 + v2*m2$

FI=u1**2*v3*a33*n1**2 + i*u1*u3*v2*a33*n1**2 + 2*u1*v2*v3*a33*m2*n1 + i*u1*v2*n1
**2*n3 - u1*v3*n1**3 + u2**2*v3*a33*n1**2 - i*u2*u3*v1*a33*n1**2 - 2*u2*v1*v3*
a33*m2*n1 - i*u2*v1*n1**2*n3 + i*u2*v3*n1**3 + u3**2*v3*a33*n1**2 + i*u3*v1**2*
a33*m2*n1 + u3*v1*n1**3 + i*u3*v2**2*a33*m2*n1 - i*u3*v2*n1**3 + v1**2*v3*a33*m2
**2 - i*v1*v3*m2*n1**2 + v2**2*v3*a33*m2**2 - v2*v3*m2*n1**2 - i*v3**2*m2*n1*n3$

FI=i*u1*v2*a33*n1 - i*u2*v1*a33*n1 + u3*v3*a33*n1 + v1*n1**2 - i*v2*n1**2 - i*v3
**2*a33*m2 + v3*n1*n3$

FI=u1**2*a33*n1**2 + 2*u1*v2*a33*m2*n1 - u1*n1**3 + u2**2*a33*n1**2 - 2*u2*v1*
a33*m2*n1 + i*u2*n1**3 - u3*n1**2*n3 - i*v1*m2*n1**2 - v2*m2*n1**2 - v3**2*a33*
m2**2$