Solution 4 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


      1      2    3          1      2    3
     ----*a12 *b11 *r4112 + ----*a13 *b11 *r4112
      96                     96
r48=---------------------------------------------
                         2    3
                      a12 *a13


      1
     ---*b11*r473
      4
r49=--------------
         a12


r410=0


       1     2             1     2
      ---*a12 *b11*r473 + ---*a13 *b11*r473
       4                   2
r411=---------------------------------------
                           2
                    a12*a13


r412=0


r413=0


          7      2                 1     2                  3      3
r414=( - ----*a12 *a13*b11*r473 + ---*a12 *b11*c22*r4112 - ----*a13 *b11*r473
          16                       8                        16

          1      2    2                3
       + ----*a13 *b11 *r4106)/(a12*a13 )
          32


r415=0


       1      2    2          1      2    2
      ----*a12 *b11 *r4112 + ----*a13 *b11 *r4112
       48                     48
r416=---------------------------------------------
                          2    2
                       a12 *a13


r417=0


       1      2    2          1      2    2
      ----*a12 *b11 *r4112 + ----*a13 *b11 *r4112
       48                     48
r418=---------------------------------------------
                          2    2
                       a12 *a13


r419=0


r420=0


         2           2
      a12 *r473 + a13 *r473
r421=-----------------------
             a12*a13


          1      4    2          1     2    3
r422=( - ----*a12 *b11 *r4112 + ---*a12 *a13 *b11*r492
          96                     4

          1      2    2    2          1      4    2            3    3
       - ----*a12 *a13 *b11 *r4112 - ----*a13 *b11 *r4112)/(a12 *a13 )
          24                          32


          1      4    2          1      4    2
       - ----*a12 *b11 *r4112 + ----*a13 *b11 *r4112
          48                     48
r423=------------------------------------------------
                           2    4
                        a12 *a13


r424=0


r425=0


r426=0


r427=0


r428=0


r429=0


r430=0


r431=0


r432=0


r433=0


r434=0


          1      2    2          1      2    2
       - ----*a12 *b11 *r4112 - ----*a13 *b11 *r4112
          48                     48
r435=------------------------------------------------
                           2    2
                        a12 *a13


r436=0


          1      2    2          1      2    2
       - ----*a12 *b11 *r4112 - ----*a13 *b11 *r4112
          48                     48
r437=------------------------------------------------
                           2    2
                        a12 *a13


r439=0


r440=0


r441=0


       1      4    2          1      4    2
      ----*a12 *b11 *r4112 - ----*a13 *b11 *r4112
       48                     48
r442=---------------------------------------------
                          2    4
                       a12 *a13


          1      4    2          1     2    3
r443=( - ----*a12 *b11 *r4112 + ---*a12 *a13 *b11*r492
          96                     4

          1      2    2    2          1      4    2            3    3
       - ----*a12 *a13 *b11 *r4112 - ----*a13 *b11 *r4112)/(a12 *a13 )
          24                          32


r444=0


r445=0


r446=0


r447=0


r448=0


r449=0


r450=0


r451=0


r452=0


r453=0


r454=0


r455=0


r456=0


r458=0


            2           2
       - a12 *r492 - a13 *r492
r459=--------------------------
                   2
                a13


r460=0


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


       - a12*r473
r470=-------------
          a13


r471=r473


      a13*r473
r472=----------
        a12


       1      2    2          1      2    2
      ----*a12 *b11 *r4112 + ----*a13 *b11 *r4112
       48                     48
r474=---------------------------------------------
                          3
                       a12 *a13


r475

      1      4    2          1      2    2    2          1      4    2
   - ----*a12 *b11 *r4112 - ----*a12 *a13 *b11 *r4112 - ----*a13 *b11 *r4112
      48                     24                          48
=----------------------------------------------------------------------------
                                     2    4
                                  a12 *a13


          1      2    2          1      2    2
       - ----*a12 *b11 *r4112 - ----*a13 *b11 *r4112
          48                     48
r476=------------------------------------------------
                                3
                         a12*a13


r477=

     5     2             1     2              3     3         1     2
  - ---*a12 *a13*r473 + ---*a12 *c22*r4112 - ---*a13 *r473 + ---*a13 *b11*r4106
     2                   2                    2               4
--------------------------------------------------------------------------------
                                           2
                                    a12*a13


r478=

     5     2             1     2              3     3         1     2
  - ---*a12 *a13*r473 + ---*a12 *c22*r4112 - ---*a13 *r473 + ---*a13 *b11*r4106
     2                   2                    2               4
--------------------------------------------------------------------------------
                                         3
                                      a13


          1      6    2          13     4    2    2
r479=( - ----*a12 *b11 *r4112 - ----*a12 *a13 *b11 *r4112
          48                     96

          1     2    5             1      2    4    2
       + ---*a12 *a13 *b11*r492 - ----*a12 *a13 *b11 *r4112
          4                        48

          1      6    2            3    5
       - ----*a13 *b11 *r4112)/(a12 *a13 )
          32


       - a12*r492
r480=-------------
          a13


r481=r492


r483=0


r484=0


          1
       - ---*a12*b11*r4112
          4
r485=----------------------
                 2
              a13


r486=0


r487=0


r488=0


r489=0


r490=0


       - a12*r492
r491=-------------
          a13


r493=0


         2            2
      a12 *r4106 + a13 *r4106
r494=-------------------------
              a12*a13


          1     2
       - ---*a12 *b11*r4112
          4
r495=-----------------------
                 3
              a13


r496=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


           1
        - ---*a12*r4106
           2
r4105=------------------
             a13


           1
        - ---*a13*r4106
           2
r4107=------------------
             a12


                          1
        - a12*a13*r492 - ---*a12*b11*r4112
                          2
r4108=-------------------------------------
                         2
                      a13


                   1
       a13*r492 + ---*b11*r4112
                   2
r4109=--------------------------
                 a13


        1     2          1     2
       ---*a12 *r4106 + ---*a13 *r4106
        2                2
r4110=---------------------------------
                   a12*a13


        - a12*r4112
r4111=--------------
           a13


r4113=0


             2
        - a12 *r4112
r4115=---------------
              2
           a13


       a12*r4112
r4116=-----------
          a13


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


c33=c22


c23=0


c13=0


c12=0


b33=0


b31=0


b21=0


b13=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r473, r4106, r492, r4112, c22, b11, a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a13,a12,b11,c22}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

                                              2         2
HAM=2*u1*u2*a12 + 2*u1*u3*a13 + u1*v1*b11 + v2 *c22 + v3 *c22

has apart from the Hamiltonian and Casimirs the following 4 first integrals: 

     2          4    4     2          5    3     2          3    5
FI=u1 *u2*v2*a12 *a13  - u1 *u2*v3*a12 *a13  + u1 *u3*v2*a12 *a13

        2          4    4    1    2          3    4
    - u1 *u3*v3*a12 *a13  + ---*u1 *v1*v2*a12 *a13 *b11
                             2

       1    2          4    3        1          2    5    2
    - ---*u1 *v1*v3*a12 *a13 *b11 - ---*u1*u2*v1 *a12 *a13 *b11
       2                             4

       1          2    4    3            3      1      6    2
    - ---*u1*u3*v1 *a12 *a13 *b11 + u1*v1 *( - ----*a12 *b11
       4                                        48

          13     4    2    2    1      2    4    2    1      6    2
       - ----*a12 *a13 *b11  - ----*a12 *a13 *b11  - ----*a13 *b11 )
          96                    48                    32

       1       2       5    2        1       2       4    3
    + ---*u1*v1 *v2*a12 *a13 *c22 + ---*u1*v1 *v3*a12 *a13 *c22
       2                             2

              2      1      4    2    2    1      2    4    2
    + u1*v1*v2 *( - ----*a12 *a13 *b11  - ----*a12 *a13 *b11 ) + u1*v1*v2*v3
                     48                    48

         1      5        2    1      3    3    2    1          5    2
   *( - ----*a12 *a13*b11  - ----*a12 *a13 *b11  - ----*a12*a13 *b11 )
         48                   24                    48

              2   1      2    4    2    1      6    2
    + u1*v1*v3 *(----*a12 *a13 *b11  + ----*a13 *b11 )
                  48                    48

           2         1      4    2    2    1      2    4    2    1      6    2
    + u2*v1 *v2*( - ----*a12 *a13 *b11  - ----*a12 *a13 *b11  - ----*a13 *b11 )
                     96                    24                    32

           2      1      5        2    1          5    2
    + u2*v1 *v3*(----*a12 *a13*b11  - ----*a12*a13 *b11 )
                  48                   48

           2         1      3    3    2    1          5    2
    + u2*v2 *v3*( - ----*a12 *a13 *b11  - ----*a12*a13 *b11 )
                     48                    48

           3      1      3    3    2    1          5    2
    + u2*v3 *( - ----*a12 *a13 *b11  - ----*a12*a13 *b11 )
                  48                    48

           2         1      5        2    1          5    2
    + u3*v1 *v2*( - ----*a12 *a13*b11  + ----*a12*a13 *b11 )
                     48                   48

           2         1      4    2    2    1      2    4    2    1      6    2
    + u3*v1 *v3*( - ----*a12 *a13 *b11  - ----*a12 *a13 *b11  - ----*a13 *b11 )
                     96                    24                    32

           3   1      3    3    2    1          5    2
    + u3*v2 *(----*a12 *a13 *b11  + ----*a12*a13 *b11 )
               48                    48

              2   1      3    3    2    1          5    2
    + u3*v2*v3 *(----*a12 *a13 *b11  + ----*a12*a13 *b11 )
                  48                    48

       1    4    4    2
    + ---*v1 *a12 *a13 *b11*c22
       8

           3   1      3    2    3    1          4    3
    + v1*v2 *(----*a12 *a13 *b11  + ----*a12*a13 *b11 )
               96                    96

{HAM,FI} = too large to simplify



     2              2     2          2               2        2
FI=u1 *v1*v2*a12*a13  - u1 *v1*v3*a12 *a13 + u1*u2*v2 *a12*a13

                     2                          2           2    2
    - u1*u2*v2*v3*a12 *a13 + u1*u3*v2*v3*a12*a13  - u1*u3*v3 *a12 *a13

       1       3    2         2              3          2
    + ---*u1*v1 *a13 *b11 + u2 *v1*v2*( - a12  - a12*a13 )
       4

       1       2       2        1       2       2
    + ---*u2*v1 *v2*a13 *b11 + ---*u3*v1 *v3*a13 *b11
       4                        4

{HAM,FI} = too large to simplify



     2   2   1     2    1     2     1    2   2    2     2
FI=u1 *v1 *(---*a12  + ---*a13 ) - ---*u1 *v2 *a13  + u1 *v2*v3*a12*a13
             2          2           2

       1    2   2    2                   2      2     1       2
    - ---*u1 *v3 *a12  + u1*u2*v1*v2*(a12  + a13 ) + ---*u1*v1 *v2*a12*b11
       2                                              4

       1       2               1     4    2
    + ---*u1*v1 *v3*a13*b11 + ----*v1 *b11
       4                       32

{HAM,FI} = too large to simplify



        2         5     3    3         2
FI=u1*v1 *v2*( - ---*a12  - ---*a12*a13 )
                  2          2

           2         5     2        3     3         3        2        2       3
    + u1*v1 *v3*( - ---*a12 *a13 - ---*a13 ) + u1*v2 *a12*a13  + u1*v2 *v3*a13
                     2              2

              2        2        3    2               2     2          3
    + u1*v2*v3 *a12*a13  - u1*v3 *a12 *a13 + u3*v1*v2 *(a12 *a13 + a13 )

        4      7      2        3      2
    + v1 *( - ----*a12 *b11 - ----*a13 *b11)
               16              16

        2   2   1     2        1     2         1    2   2    2
    + v1 *v2 *(---*a12 *b11 + ---*a13 *b11) + ---*v1 *v3 *a13 *b11
                4              2               4

{HAM,FI} = too large to simplify





And again in machine readable form:



HAM=2*u1*u2*a12 + 2*u1*u3*a13 + u1*v1*b11 + v2**2*c22 + v3**2*c22$

FI=u1**2*u2*v2*a12**4*a13**4 - u1**2*u2*v3*a12**5*a13**3 + u1**2*u3*v2*a12**3*
a13**5 - u1**2*u3*v3*a12**4*a13**4 + 1/2*u1**2*v1*v2*a12**3*a13**4*b11 - 1/2*u1
**2*v1*v3*a12**4*a13**3*b11 - 1/4*u1*u2*v1**2*a12**5*a13**2*b11 - 1/4*u1*u3*v1**
2*a12**4*a13**3*b11 + u1*v1**3*( - 1/48*a12**6*b11**2 - 13/96*a12**4*a13**2*b11
**2 - 1/48*a12**2*a13**4*b11**2 - 1/32*a13**6*b11**2) + 1/2*u1*v1**2*v2*a12**5*
a13**2*c22 + 1/2*u1*v1**2*v3*a12**4*a13**3*c22 + u1*v1*v2**2*( - 1/48*a12**4*a13
**2*b11**2 - 1/48*a12**2*a13**4*b11**2) + u1*v1*v2*v3*( - 1/48*a12**5*a13*b11**2
 - 1/24*a12**3*a13**3*b11**2 - 1/48*a12*a13**5*b11**2) + u1*v1*v3**2*(1/48*a12**
2*a13**4*b11**2 + 1/48*a13**6*b11**2) + u2*v1**2*v2*( - 1/96*a12**4*a13**2*b11**
2 - 1/24*a12**2*a13**4*b11**2 - 1/32*a13**6*b11**2) + u2*v1**2*v3*(1/48*a12**5*
a13*b11**2 - 1/48*a12*a13**5*b11**2) + u2*v2**2*v3*( - 1/48*a12**3*a13**3*b11**2
 - 1/48*a12*a13**5*b11**2) + u2*v3**3*( - 1/48*a12**3*a13**3*b11**2 - 1/48*a12*
a13**5*b11**2) + u3*v1**2*v2*( - 1/48*a12**5*a13*b11**2 + 1/48*a12*a13**5*b11**2
) + u3*v1**2*v3*( - 1/96*a12**4*a13**2*b11**2 - 1/24*a12**2*a13**4*b11**2 - 1/32
*a13**6*b11**2) + u3*v2**3*(1/48*a12**3*a13**3*b11**2 + 1/48*a12*a13**5*b11**2) 
+ u3*v2*v3**2*(1/48*a12**3*a13**3*b11**2 + 1/48*a12*a13**5*b11**2) + 1/8*v1**4*
a12**4*a13**2*b11*c22 + v1*v2**3*(1/96*a12**3*a13**2*b11**3 + 1/96*a12*a13**4*
b11**3)$

FI=u1**2*v1*v2*a12*a13**2 - u1**2*v1*v3*a12**2*a13 + u1*u2*v2**2*a12*a13**2 - u1
*u2*v2*v3*a12**2*a13 + u1*u3*v2*v3*a12*a13**2 - u1*u3*v3**2*a12**2*a13 + 1/4*u1*
v1**3*a13**2*b11 + u2**2*v1*v2*( - a12**3 - a12*a13**2) + 1/4*u2*v1**2*v2*a13**2
*b11 + 1/4*u3*v1**2*v3*a13**2*b11$

FI=u1**2*v1**2*(1/2*a12**2 + 1/2*a13**2) - 1/2*u1**2*v2**2*a13**2 + u1**2*v2*v3*
a12*a13 - 1/2*u1**2*v3**2*a12**2 + u1*u2*v1*v2*(a12**2 + a13**2) + 1/4*u1*v1**2*
v2*a12*b11 + 1/4*u1*v1**2*v3*a13*b11 + 1/32*v1**4*b11**2$

FI=u1*v1**2*v2*( - 5/2*a12**3 - 3/2*a12*a13**2) + u1*v1**2*v3*( - 5/2*a12**2*a13
 - 3/2*a13**3) + u1*v2**3*a12*a13**2 + u1*v2**2*v3*a13**3 + u1*v2*v3**2*a12*a13
**2 - u1*v3**3*a12**2*a13 + u3*v1*v2**2*(a12**2*a13 + a13**3) + v1**4*( - 7/16*
a12**2*b11 - 3/16*a13**2*b11) + v1**2*v2**2*(1/4*a12**2*b11 + 1/2*a13**2*b11) + 
1/4*v1**2*v3**2*a13**2*b11$