Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
       2      2
0=4*a23  + a33


Expressions

The solution is given through the following expressions:

      3     2    2         1             2         1     2    2
     ---*a11 *b23 *r213 - ---*a11*a33*b23 *r213 + ---*a33 *b23 *r213
      8                    2                       8
r20=-----------------------------------------------------------------
                                 2
                              a11 *a23*a33


      3     2    2                   2         1     2    2
     ---*a11 *b23 *r213 - a11*a33*b23 *r213 + ---*a33 *b23 *r213
      4                                        4
r21=-------------------------------------------------------------
                                 2    2
                              a11 *a33


r23=0


r24=0


      3      3    2    2         1     2    2        2
r25=(----*a11 *a33 *b23 *r213 + ---*a11 *a23 *a33*b23 *r213
      32                         2

         3      2    3    2         9         4    2
      - ----*a11 *a33 *b23 *r213 + ---*a11*a23 *b23 *r213
         32                         8

         11         2    2    2         1     2    3    2           2    3    2
      - ----*a11*a23 *a33 *b23 *r213 + ---*a23 *a33 *b23 *r213)/(a11 *a23 *a33 )
         32                             8


           2             1     2
      - a23 *b23*r213 - ---*a33 *b23*r213
                         2
r26=--------------------------------------
                      2
                   a23 *a33


      1                  1
     ---*a11*b23*r213 - ---*a33*b23*r213
      2                  2
r27=-------------------------------------
                   a23*a33


r28=0


         1              1
      - ---*a11*r213 + ---*a33*r213
         2              2
r29=--------------------------------
                  a23


       1         2             1         2
      ---*a11*a23 *b23*r213 + ---*a11*a33 *b23*r213
       2                       4
r210=-----------------------------------------------
                           3
                        a23 *a33


r212=0


          1
       - ---*a11*r213
          2
r214=-----------------
            a23


r215=0


r216=0


          1     2                 3         2             1     2
       - ---*a11 *a33*b23*r213 - ---*a11*a23 *b23*r213 + ---*a23 *a33*b23*r213
          2                       2                       2
r217=--------------------------------------------------------------------------
                                           2
                                    a11*a23 *a33


r218=0


r219=0


         1             2    9     2    2    1      2    2
      - ---*a11*a33*b23  - ---*a23 *b23  - ----*a33 *b23
         2                  4               16
c33=------------------------------------------------------
                                  2
                           a11*a33


      1      2    2    1     2    2
     ----*a11 *b23  + ---*a23 *b23
      16               4
c23=--------------------------------
                   2
                a11 *a23


      1     2    2        2    3      2    3    2    9         4    2
c22=(---*a11 *a23 *a33*b23  + ----*a11 *a33 *b23  - ---*a11*a23 *b23
      2                        16                    4

         1          2    2    2    1     2    3    2      2    2    2
      - ----*a11*a23 *a33 *b23  - ---*a23 *a33 *b23 )/(a11 *a23 *a33 )
         16                        4


c13=0


c12=0


      - 2*a23*b23
b33=--------------
         a33


b31=0


b21=0


      - 3*a11*a23*b23 + a23*a33*b23
b11=--------------------------------
                a11*a33


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r213, b23, a33, a11, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a23,a11,r213,a33,b23}


Relevance for the application:

Modulo the following equation:

       2      2
0=4*a23  + a33


the system of equations related to the Hamiltonian HAM:

       2    3    2    2                  2    3                  3    2
HAM=(u1 *a11 *a23 *a33  + u1*v1*( - 3*a11 *a23 *a33*b23 + a11*a23 *a33 *b23)

                   2    3    2            2    2    2         2    2    2    3
      + 2*u2*u3*a11 *a23 *a33  + u2*v3*a11 *a23 *a33 *b23 + u3 *a11 *a23 *a33

                   2    3             2   1     2    2        2
      - 2*u3*v3*a11 *a23 *a33*b23 + v2 *(---*a11 *a23 *a33*b23
                                          2

            3      2    3    2    9         4    2    1          2    2    2
         + ----*a11 *a33 *b23  - ---*a11*a23 *b23  - ----*a11*a23 *a33 *b23
            16                    4                   16

            1     2    3    2
         - ---*a23 *a33 *b23 )
            4

                1     2        2    2    1     3    2    2      2
      + v2*v3*(---*a11 *a23*a33 *b23  + ---*a23 *a33 *b23 ) + v3
                8                        2

           1     2    2        2    9         4    2    1          2    2    2
     *( - ---*a11 *a23 *a33*b23  - ---*a11*a23 *b23  - ----*a11*a23 *a33 *b23 ))
           2                        4                   16

         2    2    2
    /(a11 *a23 *a33 )

has apart from the Hamiltonian and Casimirs only the following first integral: 

FI=u1*v1

         1     3        2        3     2    3            1         3    2
   *( - ---*a11 *a23*a33 *b23 - ---*a11 *a23 *a33*b23 + ---*a11*a23 *a33 *b23)
         2                       2                       2

       1    2    3    2    2            2    3    2
    - ---*u2 *a11 *a23 *a33  + u2*u3*a11 *a23 *a33
       2

              1     3    2            1     3    3
    + u2*v3*(---*a11 *a23 *a33*b23 + ---*a11 *a33 *b23)
              2                       4

        2      1     3    2    2    1     2    2    3
    + u3 *( - ---*a11 *a23 *a33  + ---*a11 *a23 *a33 )
               2                    2

              1     3    2            1     2    2    2
    + u3*v2*(---*a11 *a23 *a33*b23 - ---*a11 *a23 *a33 *b23)
              2                       2

                   2    3            1     2        3          2
    + u3*v3*( - a11 *a23 *a33*b23 - ---*a11 *a23*a33 *b23) + v1 *(
                                     2

       3      3    2    2    1     2    2        2    3      2    3    2
      ----*a11 *a33 *b23  + ---*a11 *a23 *a33*b23  - ----*a11 *a33 *b23
       32                    2                        32

          9         4    2    11         2    2    2    1     2    3    2
       + ---*a11*a23 *b23  - ----*a11*a23 *a33 *b23  + ---*a23 *a33 *b23 )
          8                   32                        8

              3     2    3    2          3        2    1     3    2    2
    + v2*v3*(---*a11 *a23 *b23  - a11*a23 *a33*b23  + ---*a23 *a33 *b23 )
              4                                        4

        2   3     2    2        2    1         2    2    2    1     2    3    2
    + v3 *(---*a11 *a23 *a33*b23  - ---*a11*a23 *a33 *b23  + ---*a23 *a33 *b23 )
            8                        2                        8

{HAM,FI} = 0





And again in machine readable form:



HAM=(u1**2*a11**3*a23**2*a33**2 + u1*v1*( - 3*a11**2*a23**3*a33*b23 + a11*a23**3
*a33**2*b23) + 2*u2*u3*a11**2*a23**3*a33**2 + u2*v3*a11**2*a23**2*a33**2*b23 + 
u3**2*a11**2*a23**2*a33**3 - 2*u3*v3*a11**2*a23**3*a33*b23 + v2**2*(1/2*a11**2*
a23**2*a33*b23**2 + 3/16*a11**2*a33**3*b23**2 - 9/4*a11*a23**4*b23**2 - 1/16*a11
*a23**2*a33**2*b23**2 - 1/4*a23**2*a33**3*b23**2) + v2*v3*(1/8*a11**2*a23*a33**2
*b23**2 + 1/2*a23**3*a33**2*b23**2) + v3**2*( - 1/2*a11**2*a23**2*a33*b23**2 - 9
/4*a11*a23**4*b23**2 - 1/16*a11*a23**2*a33**2*b23**2))/(a11**2*a23**2*a33**2)$

FI=u1*v1*( - 1/2*a11**3*a23*a33**2*b23 - 3/2*a11**2*a23**3*a33*b23 + 1/2*a11*a23
**3*a33**2*b23) - 1/2*u2**2*a11**3*a23**2*a33**2 + u2*u3*a11**2*a23**3*a33**2 + 
u2*v3*(1/2*a11**3*a23**2*a33*b23 + 1/4*a11**3*a33**3*b23) + u3**2*( - 1/2*a11**3
*a23**2*a33**2 + 1/2*a11**2*a23**2*a33**3) + u3*v2*(1/2*a11**3*a23**2*a33*b23 - 
1/2*a11**2*a23**2*a33**2*b23) + u3*v3*( - a11**2*a23**3*a33*b23 - 1/2*a11**2*a23
*a33**3*b23) + v1**2*(3/32*a11**3*a33**2*b23**2 + 1/2*a11**2*a23**2*a33*b23**2 -
 3/32*a11**2*a33**3*b23**2 + 9/8*a11*a23**4*b23**2 - 11/32*a11*a23**2*a33**2*b23
**2 + 1/8*a23**2*a33**3*b23**2) + v2*v3*(3/4*a11**2*a23**3*b23**2 - a11*a23**3*
a33*b23**2 + 1/4*a23**3*a33**2*b23**2) + v3**2*(3/8*a11**2*a23**2*a33*b23**2 - 1
/2*a11*a23**2*a33**2*b23**2 + 1/8*a23**2*a33**3*b23**2)$