Solution 1 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r425=0


r426=0


r428=0


r429=0


r430=0


r431=0


r432=0


r433=0


r435=0


r439=0


r442=0


r444=0


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


r455=0


r458=0


r460=0


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


       1     4    2              11      4    3
r470=(---*a12 *a33 *b12*r482 - ------*a12 *b12 *r4103
       6                        2160

          1     2    2    2             1     2    2    3
       + ---*a12 *a13 *a33 *b12*r482 - ---*a12 *a13 *b12 *r4103
          6                             5

          421      4    3            3    4
       - ------*a13 *b12 *r4103)/(a12 *a33 )
          2160


          1     4        2              11      4        3
r471=( - ---*a12 *a13*a33 *b12*r482 + ------*a12 *a13*b12 *r4103
          6                            2160

          1     2    3    2             1     2    3    3
       - ---*a12 *a13 *a33 *b12*r482 + ---*a12 *a13 *b12 *r4103
          6                             5

          421      5    3            4    4
       + ------*a13 *b12 *r4103)/(a12 *a33 )
          2160


       1     4    2              11      4    3
r472=(---*a12 *a33 *b12*r482 - ------*a12 *b12 *r4103
       6                        2160

          1     2    2    2             1     2    2    3
       + ---*a12 *a13 *a33 *b12*r482 - ---*a12 *a13 *b12 *r4103
          6                             5

          421      4    3            3    4
       - ------*a13 *b12 *r4103)/(a12 *a33 )
          2160


          1     4        2              11      4        3
r473=( - ---*a12 *a13*a33 *b12*r482 + ------*a12 *a13*b12 *r4103
          6                            2160

          1     2    3    2             1     2    3    3
       - ---*a12 *a13 *a33 *b12*r482 + ---*a12 *a13 *b12 *r4103
          6                             5

          421      5    3            4    4
       + ------*a13 *b12 *r4103)/(a12 *a33 )
          2160


          1     2             1     2
       - ---*a12 *b12*r482 - ---*a13 *b12*r482
          2                   2
r474=------------------------------------------
                    a12*a13*a33


r475=0


          1     2             1     2
       - ---*a12 *b12*r482 - ---*a13 *b12*r482
          2                   2
r476=------------------------------------------
                    a12*a13*a33


r477=

      11      4    3          3      2    2    3          421      4    3
  - ------*a12 *b12 *r4103 - ----*a12 *a13 *b12 *r4103 - ------*a13 *b12 *r4103
     1440                     10                          1440
--------------------------------------------------------------------------------
                                      3    4
                                   a12 *a33


        11      4        3          3      2    3    3
r478=(------*a12 *a13*b12 *r4103 + ----*a12 *a13 *b12 *r4103
       1440                         10

          421      5    3            4    4
       + ------*a13 *b12 *r4103)/(a12 *a33 )
          1440


r479

    11      4    3          3      2    2    3          421      4    3
  ------*a12 *b12 *r4103 + ----*a12 *a13 *b12 *r4103 + ------*a13 *b12 *r4103
   1440                     10                          1440
=-----------------------------------------------------------------------------
                                    3        3
                                 a12 *a13*a33


r480=r482


r483=0


r484=0


         4    2         125      2    2    2          125      4    2
      a12 *a33 *r482 + ------*a12 *a13 *b12 *r4103 + ------*a13 *b12 *r4103
                        2392                          2392
r485=-----------------------------------------------------------------------
                                       4    2
                                    a12 *a33


r486=0


r487=0


r488=0


r489=r4103


      a12*r482
r490=----------
        a13


r493=0


         4    2         125      2    2    2          125      4    2
      a12 *a33 *r482 + ------*a12 *a13 *b12 *r4103 + ------*a13 *b12 *r4103
                        2392                          2392
r495=-----------------------------------------------------------------------
                                     3        2
                                  a12 *a13*a33


r496=0


r498=0


      a12*r4103
r499=-----------
         a13


r4100=0


r4102=0


       a12*r4103
r4104=-----------
          a13


        1     6    2         1     4    2    2
r4105=(---*a12 *a33 *r482 + ---*a12 *a13 *a33 *r482
        2                    2

           427      4    2    2          1      4    2    2
        + ------*a12 *a13 *b12 *r4103 - ----*a12 *a33 *b12 *r4103
           1688                          16

           1     2    4    2          1      2    2    2    2
        - ---*a12 *a13 *b12 *r4103 - ----*a12 *a13 *a33 *b12 *r4103
           2                          16

           1271     6    2            4        3
        - ------*a13 *b12 *r4103)/(a12 *a13*a33 )
           1688


             2           2
        - a12 *r482 - a13 *r482
r4106=--------------------------
               a12*a33


           1     4         1     2    2         1      2    2
r4107=( - ---*a12 *r482 - ---*a12 *a13 *r482 - ----*a12 *b12 *r4103
           2               2                    16

           1      2    2            2
        - ----*a13 *b12 *r4103)/(a12 *a13*a33)
           16


            4    2             2    2    2         427     2    2    2
r4108=(2*a12 *a33 *r482 + 2*a12 *a13 *a33 *r482 + -----*a12 *a13 *b12 *r4103
                                                   844

           427     4    2            2    2    2
        + -----*a13 *b12 *r4103)/(a12 *a13 *a33 )
           844


             4    2         1271     2    2    2          1271     4    2
        - a12 *a33 *r482 - ------*a12 *a13 *b12 *r4103 - ------*a13 *b12 *r4103
                            844                           844
r4109=--------------------------------------------------------------------------
                                       3        2
                                    a12 *a13*a33


        1     6    2         3     4    2    2
r4110=(---*a12 *a33 *r482 + ---*a12 *a13 *a33 *r482
        2                    2

           427      4    2    2          1      4    2    2
        + ------*a12 *a13 *b12 *r4103 - ----*a12 *a33 *b12 *r4103
           1688                          16

             2    4    2         50649      2    4    2
        + a12 *a13 *a33 *r482 + --------*a12 *a13 *b12 *r4103
                                 252356

           1      2    2    2    2          125      6    2            4
        - ----*a12 *a13 *a33 *b12 *r4103 - ------*a13 *b12 *r4103)/(a12 *a13
           16                               2392

       3
   *a33 )


       2*a13*b12*r4103
r4111=-----------------
           a12*a33


       b12*r4103
r4112=-----------
          a33


r4113=0


       b12*r4103
r4115=-----------
          a33


             2                2
        - a12 *b12*r4114 - a13 *b12*r4114
r4117=------------------------------------
                       2
                    a13 *a33


       2*a12*r4114
r4118=-------------
           a13


          2
       a12 *r4114
r4119=------------
             2
          a13


r4120=0


             2                2
        - a12 *b12*r4103 - a13 *b12*r4103
r4121=------------------------------------
                           2
                    a13*a33


        - a12*b12*r4103
r4122=------------------
           a13*a33


r4123=r4103


       a12*r4103
r4124=-----------
          a13


r4125=0


c33=0


c23=0


c22=0


c13=0


c12=0


b33=0


b23=0


     a13*b12
b13=---------
       a12


b11=0


       - a12*r482
r481=-------------
          a13


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r482, r4114, r4103, b12, a12, a13, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a12,a13,a33,b12}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

       2                      2
HAM=(u1 *a12*a33 + 2*u1*u2*a12  + 2*u1*u3*a12*a13 + u1*v2*a12*b12

                          2             2
      + u1*v3*a13*b12 + u2 *a12*a33 + u3 *a12*a33)/a12

has apart from the Hamiltonian and Casimirs the following 3 first integrals: 

     3       5    4     3       4        4     3       5    3
FI=u1 *u2*a12 *a33  + u1 *u3*a12 *a13*a33  - u1 *v1*a12 *a33 *b12

        3           6    2          4    2    2
    + u1 *v2*( - a12 *a33 *b12 - a12 *a13 *a33 *b12)

        2          4        3         2          4        3
    + u1 *u2*v3*a12 *a13*a33 *b12 + u1 *u3*v2*a12 *a13*a33 *b12

          2          3    2    3         2   2   427      4    2        2
    + 2*u1 *u3*v3*a12 *a13 *a33 *b12 + u1 *v1 *(------*a12 *a13 *a33*b12
                                                 1688

          1      4    3    2    50649      2    4        2
       - ----*a12 *a33 *b12  + --------*a12 *a13 *a33*b12
          16                    252356

          1      2    2    3    2    125      6        2
       - ----*a12 *a13 *a33 *b12  - ------*a13 *a33*b12 )
          16                         2392

        2            1271     3    2    2    2    1271         4    2    2
    + u1 *v1*v2*( - ------*a12 *a13 *a33 *b12  - ------*a12*a13 *a33 *b12 )
                     844                          844

        2         427     4        2    2    427     2    3    2    2
    + u1 *v1*v3*(-----*a12 *a13*a33 *b12  + -----*a12 *a13 *a33 *b12 )
                  844                        844

        2   2      1      4    3    2    1      2    2    3    2      2   2
    + u1 *v2 *( - ----*a12 *a33 *b12  - ----*a12 *a13 *a33 *b12 ) + u1 *v3 *(
                   16                    16

       427      4    2        2    1      4    3    2    1     2    4        2
      ------*a12 *a13 *a33*b12  - ----*a12 *a33 *b12  - ---*a12 *a13 *a33*b12
       1688                        16                    2

          1      2    2    3    2    1271     6        2         3    5    4
       - ----*a12 *a13 *a33 *b12  - ------*a13 *a33*b12 ) + u1*u2 *a12 *a33
          16                         1688

           2       4        4           2    5    4
    + u1*u2 *u3*a12 *a13*a33  + u1*u2*u3 *a12 *a33

              2   125      3    2    2    2    125          4    2    2
    + u1*u2*v1 *(------*a12 *a13 *a33 *b12  + ------*a12*a13 *a33 *b12 )
                  2392                         2392

           3    4        4
    + u1*u3 *a12 *a13*a33

              2   125      2    3    2    2    125      5    2    2         3
    + u1*u3*v1 *(------*a12 *a13 *a33 *b12  + ------*a13 *a33 *b12 ) + u1*v1
                  2392                         2392

       11      5        3    3      3    2        3    421          4        3
   *(------*a12 *a33*b12  + ----*a12 *a13 *a33*b12  + ------*a12*a13 *a33*b12 )
      1440                   10                        1440

           2       11      4    2    3    3      2    4    3    421      6    3
    + u1*v1 *v2*(------*a12 *a13 *b12  + ----*a12 *a13 *b12  + ------*a13 *b12 )
                  1440                    10                    1440

           2
    + u1*v1 *v3

          11      5        3    3      3    3    3    421          5    3
   *( - ------*a12 *a13*b12  - ----*a12 *a13 *b12  - ------*a12*a13 *b12 )
         1440                   10                    1440

           3    11      4    2    3    1     2    4    3    421      6    3
    + u1*v2 *(------*a12 *a13 *b12  + ---*a12 *a13 *b12  + ------*a13 *b12 ) + 
               2160                    5                    2160

        2
   u1*v2 *v3

          11      5        3    1     3    3    3    421          5    3
   *( - ------*a12 *a13*b12  - ---*a12 *a13 *b12  - ------*a12*a13 *b12 )
         2160                   5                    2160

              2    11      4    2    3    1     2    4    3    421      6    3
    + u1*v2*v3 *(------*a12 *a13 *b12  + ---*a12 *a13 *b12  + ------*a13 *b12 ) 
                  2160                    5                    2160

          3
   + u1*v3

          11      5        3    1     3    3    3    421          5    3
   *( - ------*a12 *a13*b12  - ---*a12 *a13 *b12  - ------*a12*a13 *b12 )
         2160                   5                    2160

{HAM,FI} = too large to simplify



     2   2    2           2
FI=u1 *u2 *a12 *a33 + 2*u1 *u2*u3*a12*a13*a33

        2              2          2          2   2    2
    + u1 *u2*v1*( - a12 *b12 - a13 *b12) + u1 *u3 *a13 *a33

{HAM,FI} = too large to simplify



     2   2   1     4            3     2    3          5
FI=u1 *v1 *(---*a12 *a13*a33 + ---*a12 *a13 *a33 + a13 *a33)
             2                  2

        2          3        2     2             4    2        2    2    2
    - u1 *v1*v2*a12 *a13*a33  + u1 *v1*v3*(2*a12 *a33  + 2*a12 *a13 *a33 )

        2   2      1     4            1     2    3
    + u1 *v2 *( - ---*a12 *a13*a33 - ---*a12 *a13 *a33)
                   2                  2

        2              3    2              4
    + u1 *v2*v3*( - a12 *a13 *a33 - a12*a13 *a33)

        2   2   1     4            1     2    3                2    3        2
    + u1 *v3 *(---*a12 *a13*a33 + ---*a12 *a13 *a33) + u1*u2*v1 *a12 *a13*a33
                2                  2

              2    3        2           2    2    2    2
    + u1*u2*v3 *a12 *a13*a33  + u1*u3*v1 *a12 *a13 *a33

              2    2    2    2                  3        2
    + u1*u3*v2 *a12 *a13 *a33  - u1*u3*v2*v3*a12 *a13*a33

              2    2    2    2
    + u1*u3*v3 *a12 *a13 *a33

              2      1     3                1         3
    + u1*v1*v2 *( - ---*a12 *a13*a33*b12 - ---*a12*a13 *a33*b12)
                     2                      2

              2      1     3                1         3
    + u1*v1*v3 *( - ---*a12 *a13*a33*b12 - ---*a12*a13 *a33*b12)
                     2                      2

           3      1     2    3        1     5
    + u1*v2 *( - ---*a12 *a13 *b12 - ---*a13 *b12)
                  6                   6

           2      1     3    2        1         4
    + u1*v2 *v3*(---*a12 *a13 *b12 + ---*a12*a13 *b12)
                  6                   6

              2      1     2    3        1     5
    + u1*v2*v3 *( - ---*a12 *a13 *b12 - ---*a13 *b12)
                     6                   6

           3   1     3    2        1         4
    + u1*v3 *(---*a12 *a13 *b12 + ---*a12*a13 *b12)
               6                   6

{HAM,FI} = too large to simplify





And again in machine readable form:



HAM=(u1**2*a12*a33 + 2*u1*u2*a12**2 + 2*u1*u3*a12*a13 + u1*v2*a12*b12 + u1*v3*
a13*b12 + u2**2*a12*a33 + u3**2*a12*a33)/a12$

FI=u1**3*u2*a12**5*a33**4 + u1**3*u3*a12**4*a13*a33**4 - u1**3*v1*a12**5*a33**3*
b12 + u1**3*v2*( - a12**6*a33**2*b12 - a12**4*a13**2*a33**2*b12) + u1**2*u2*v3*
a12**4*a13*a33**3*b12 + u1**2*u3*v2*a12**4*a13*a33**3*b12 + 2*u1**2*u3*v3*a12**3
*a13**2*a33**3*b12 + u1**2*v1**2*(427/1688*a12**4*a13**2*a33*b12**2 - 1/16*a12**
4*a33**3*b12**2 + 50649/252356*a12**2*a13**4*a33*b12**2 - 1/16*a12**2*a13**2*a33
**3*b12**2 - 125/2392*a13**6*a33*b12**2) + u1**2*v1*v2*( - 1271/844*a12**3*a13**
2*a33**2*b12**2 - 1271/844*a12*a13**4*a33**2*b12**2) + u1**2*v1*v3*(427/844*a12
**4*a13*a33**2*b12**2 + 427/844*a12**2*a13**3*a33**2*b12**2) + u1**2*v2**2*( - 1
/16*a12**4*a33**3*b12**2 - 1/16*a12**2*a13**2*a33**3*b12**2) + u1**2*v3**2*(427/
1688*a12**4*a13**2*a33*b12**2 - 1/16*a12**4*a33**3*b12**2 - 1/2*a12**2*a13**4*
a33*b12**2 - 1/16*a12**2*a13**2*a33**3*b12**2 - 1271/1688*a13**6*a33*b12**2) + 
u1*u2**3*a12**5*a33**4 + u1*u2**2*u3*a12**4*a13*a33**4 + u1*u2*u3**2*a12**5*a33
**4 + u1*u2*v1**2*(125/2392*a12**3*a13**2*a33**2*b12**2 + 125/2392*a12*a13**4*
a33**2*b12**2) + u1*u3**3*a12**4*a13*a33**4 + u1*u3*v1**2*(125/2392*a12**2*a13**
3*a33**2*b12**2 + 125/2392*a13**5*a33**2*b12**2) + u1*v1**3*(11/1440*a12**5*a33*
b12**3 + 3/10*a12**3*a13**2*a33*b12**3 + 421/1440*a12*a13**4*a33*b12**3) + u1*v1
**2*v2*(11/1440*a12**4*a13**2*b12**3 + 3/10*a12**2*a13**4*b12**3 + 421/1440*a13
**6*b12**3) + u1*v1**2*v3*( - 11/1440*a12**5*a13*b12**3 - 3/10*a12**3*a13**3*b12
**3 - 421/1440*a12*a13**5*b12**3) + u1*v2**3*(11/2160*a12**4*a13**2*b12**3 + 1/5
*a12**2*a13**4*b12**3 + 421/2160*a13**6*b12**3) + u1*v2**2*v3*( - 11/2160*a12**5
*a13*b12**3 - 1/5*a12**3*a13**3*b12**3 - 421/2160*a12*a13**5*b12**3) + u1*v2*v3
**2*(11/2160*a12**4*a13**2*b12**3 + 1/5*a12**2*a13**4*b12**3 + 421/2160*a13**6*
b12**3) + u1*v3**3*( - 11/2160*a12**5*a13*b12**3 - 1/5*a12**3*a13**3*b12**3 - 
421/2160*a12*a13**5*b12**3)$

FI=u1**2*u2**2*a12**2*a33 + 2*u1**2*u2*u3*a12*a13*a33 + u1**2*u2*v1*( - a12**2*
b12 - a13**2*b12) + u1**2*u3**2*a13**2*a33$

FI=u1**2*v1**2*(1/2*a12**4*a13*a33 + 3/2*a12**2*a13**3*a33 + a13**5*a33) - u1**2
*v1*v2*a12**3*a13*a33**2 + u1**2*v1*v3*(2*a12**4*a33**2 + 2*a12**2*a13**2*a33**2
) + u1**2*v2**2*( - 1/2*a12**4*a13*a33 - 1/2*a12**2*a13**3*a33) + u1**2*v2*v3*( 
- a12**3*a13**2*a33 - a12*a13**4*a33) + u1**2*v3**2*(1/2*a12**4*a13*a33 + 1/2*
a12**2*a13**3*a33) + u1*u2*v1**2*a12**3*a13*a33**2 + u1*u2*v3**2*a12**3*a13*a33
**2 + u1*u3*v1**2*a12**2*a13**2*a33**2 + u1*u3*v2**2*a12**2*a13**2*a33**2 - u1*
u3*v2*v3*a12**3*a13*a33**2 + u1*u3*v3**2*a12**2*a13**2*a33**2 + u1*v1*v2**2*( - 
1/2*a12**3*a13*a33*b12 - 1/2*a12*a13**3*a33*b12) + u1*v1*v3**2*( - 1/2*a12**3*
a13*a33*b12 - 1/2*a12*a13**3*a33*b12) + u1*v2**3*( - 1/6*a12**2*a13**3*b12 - 1/6
*a13**5*b12) + u1*v2**2*v3*(1/6*a12**3*a13**2*b12 + 1/6*a12*a13**4*b12) + u1*v2*
v3**2*( - 1/6*a12**2*a13**3*b12 - 1/6*a13**5*b12) + u1*v3**3*(1/6*a12**3*a13**2*
b12 + 1/6*a12*a13**4*b12)$