Solution 16 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


r13=0


r14=0


r15=0


          2                  2   2                 2
r20=(i*a33 *b23*m2*r323 - a33 *m2 *r455 - i*a33*b23 *n3*r323

                                  2   2           2    2
      + 2*a33*b23*m2*n3*r455 - b23 *n3 *r455)/(a33 *b23 )


r21=0


r22=0


r23=0


r24=0


r26=0


r27=0


r28=0


r210=0


r212=0


r213=0


r214=0


r215=0


r216=0


r217=0


r218=0


r219=0


r220=0


r30=0


      - 2*i*a33*b23*r323 + 2*a33*m2*r455 - 2*b23*n3*r455
r31=-----------------------------------------------------
                               2
                            a33


     2*c13*r323
r32=------------
        b23


r33=0


      - 2*a33*b23*r323 - 2*i*a33*m2*r455 + 2*i*b23*n3*r455
r34=-------------------------------------------------------
                                2
                             a33


r35=0


r36=0


     2*c13*r323
r37=------------
        b23


r38=0


r39=0


       - i*a33*b23*r323 + 2*a33*m2*r455 - 2*b23*n3*r455
r310=---------------------------------------------------
                           a33*b23


r311=0


r312=0


r313=0


r314=0


r315=0


r316=0


r317=0


r318=0


r319=0


r320=0


r325=0


r326=0


r328=0


r329=0


r330=0


r332=0


r333=0


r334=0


r335=0


r336= - r323


r337=0


r338=0


r339=0


r340=0


r341=0


r342=0


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


r353=0


r354=0


r355=0


r40=0


      - 4*i*c13*r455
r41=-----------------
           a33


          2
     4*c13 *r455
r42=-------------
           2
        b23


r43=0


r44=0


      - 4*c13*r455
r45=---------------
          a33


r46=0


r47=0


r48=0


          2
     4*c13 *r455
r49=-------------
           2
        b23


r410=0


r411=0


r412=0


r413=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r425=0


r426=0


r427=0


r428=0


r429=0


r431=0


r432=0


r433=0


       - 2*b23*r455
r435=---------------
           a33


      4*c13*r455
r439=------------
         b23


r442=0


r444=0


r445=0


r448=0


r450=0


r451=0


r453=0


r454=0


r458=0


r460=0


r461=0


r463=0


r464=0


r465=0


r467=0


r468=0


r469=0


      2*i*b23*r455
r470=--------------
          a33


       - 4*c13*r455
r471=---------------
           b23


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


r4105=r455


r4106=0


r4107=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=0


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


r4125=0


m3=0


m1= - i*m2


n2=0


n1=0


           2
      - b23
c33=---------
       a33


c23=i*c13


             2
      - 2*b23
c22=-----------
        a33


          2
     i*b23
c12=--------
      a33


c11=0


b33=0


b32=0


b31=0


b22=0


b21=0


b13= - i*b23


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r323, r455, m2, n3, b23, c13, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33,r455,b23,c12}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b13 + i*b23,
b21,
b22,
b31,
b32,
b33,
c11,
a33*c12 - i*b23**2,
a33*c22 + 2*b23**2,
 - i*c13 + c23,
a33*c33 + b23**2,
n1,
n2,
m1 + i*m2,
m3}$

The system of equations related to the Hamiltonian HAM:

                                                                 2
                                   2                2*i*v1*v2*b23
HAM= - i*u1*v3*b23 + u2*v3*b23 + u3 *a33 + u3*n3 + ----------------
                                                         a33

                                       2    2
                                 - 2*v2 *b23
     + 2*v1*v3*c13 - i*v1*m2 + --------------- + 2*i*v2*v3*c13 + v2*m2
                                     a33

             2    2
         - v3 *b23
     + -------------
            a33

has apart from the Hamiltonian and Casimirs the following 2 first integrals: 

     2   2    2    2             2    2                    3        3
FI=u1 *v3 *a33 *b23  - 4*u1*v2*v3 *a33 *b23*c13 + 2*i*u1*v3 *a33*b23

        2   2    2    2             2    2                  3        3
    + u2 *v3 *a33 *b23  + 4*u2*v1*v3 *a33 *b23*c13 - 2*u2*v3 *a33*b23

           2       2                   2           2   2    2    2
    + u3*v3 *(2*a33 *b23*m2 - 2*a33*b23 *n3) + 4*v1 *v3 *a33 *c13

             3        2            2                2             3
    - 4*v1*v3 *a33*b23 *c13 + v1*v3 *( - 2*i*a33*b23 *m2 + 2*i*b23 *n3)

          2   2    2    2            3        2
    + 4*v2 *v3 *a33 *c13  - 4*i*v2*v3 *a33*b23 *c13

           2           2           3
    + v2*v3 *(2*a33*b23 *m2 - 2*b23 *n3)

        2        2   2                        2   2
    + v3 *( - a33 *m2  + 2*a33*b23*m2*n3 - b23 *n3 )

  = a product of the elements of: {v3,

   v3,

     2    2    2              2                            3     2    2    2
   u1 *a33 *b23  - 4*u1*v2*a33 *b23*c13 + 2*i*u1*v3*a33*b23  + u2 *a33 *b23

                 2                          3
    + 4*u2*v1*a33 *b23*c13 - 2*u2*v3*a33*b23

               2                   2           2    2    2
    + u3*(2*a33 *b23*m2 - 2*a33*b23 *n3) + 4*v1 *a33 *c13

                     2                         2             3
    - 4*v1*v3*a33*b23 *c13 + v1*( - 2*i*a33*b23 *m2 + 2*i*b23 *n3)

          2    2    2                    2                    2           3
    + 4*v2 *a33 *c13  - 4*i*v2*v3*a33*b23 *c13 + v2*(2*a33*b23 *m2 - 2*b23 *n3)

         2   2                        2   2
    - a33 *m2  + 2*a33*b23*m2*n3 - b23 *n3 }

{HAM,FI} = {2,

            v3,

            v3,

            b23,

            b23,

            a33,

            a33,

            u1*v1 + u2*v2 + u3*v3,

            u1*b23 + i*u2*b23 + 2*i*v1*c13 - 2*v2*c13}



                                                   2               2
FI= - u1*v2*v3*a33*b23 + u2*v1*v3*a33*b23 - i*u3*v3 *a33*b23 + 2*v1 *v3*a33*c13

             2    2       2                       2    2
    - 2*v1*v3 *b23  + 2*v2 *v3*a33*c13 - 2*i*v2*v3 *b23

        2
    + v3 *(i*a33*m2 - i*b23*n3)

  = a product of the elements of: { - v3,

                                                         2
   u1*v2*a33*b23 - u2*v1*a33*b23 + i*u3*v3*a33*b23 - 2*v1 *a33*c13

                 2       2                        2
    + 2*v1*v3*b23  - 2*v2 *a33*c13 + 2*i*v2*v3*b23

    + v3*( - i*a33*m2 + i*b23*n3)}

{HAM,FI} = {i,

            b23,

            b23,

            v3,

            v1 + i*v2,

            u1*v1 + u2*v2 + u3*v3,

            a33}





And again in machine readable form:



HAM= - i*u1*v3*b23 + u2*v3*b23 + u3**2*a33 + u3*n3 + (2*i*v1*v2*b23**2)/a33 + 2*
v1*v3*c13 - i*v1*m2 + ( - 2*v2**2*b23**2)/a33 + 2*i*v2*v3*c13 + v2*m2 + ( - v3**
2*b23**2)/a33$

FI=u1**2*v3**2*a33**2*b23**2 - 4*u1*v2*v3**2*a33**2*b23*c13 + 2*i*u1*v3**3*a33*
b23**3 + u2**2*v3**2*a33**2*b23**2 + 4*u2*v1*v3**2*a33**2*b23*c13 - 2*u2*v3**3*
a33*b23**3 + u3*v3**2*(2*a33**2*b23*m2 - 2*a33*b23**2*n3) + 4*v1**2*v3**2*a33**2
*c13**2 - 4*v1*v3**3*a33*b23**2*c13 + v1*v3**2*( - 2*i*a33*b23**2*m2 + 2*i*b23**
3*n3) + 4*v2**2*v3**2*a33**2*c13**2 - 4*i*v2*v3**3*a33*b23**2*c13 + v2*v3**2*(2*
a33*b23**2*m2 - 2*b23**3*n3) + v3**2*( - a33**2*m2**2 + 2*a33*b23*m2*n3 - b23**2
*n3**2)$

FI= - u1*v2*v3*a33*b23 + u2*v1*v3*a33*b23 - i*u3*v3**2*a33*b23 + 2*v1**2*v3*a33*
c13 - 2*v1*v3**2*b23**2 + 2*v2**2*v3*a33*c13 - 2*i*v2*v3**2*b23**2 + v3**2*(i*
a33*m2 - i*b23*n3)$