Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

         1
      - ---*a12*n2*r215
         2
r10=--------------------
               2
            a13


      1
     ---*n2*r215
      2
r11=-------------
         a13


      1
     ---*n1*r215
      2
r12=-------------
         a13


r13=0


r14=0


r15=0


r20=0


r21=0


r23=0


r24=0


r25=0


r26=0


r27=0


r28=0


r29=r214


r210=0


r212=0


r213=0


      a12*r215
r216=----------
        a13


r217=0


r219=0


r220=r214


m3=0


m2=0


m1=0


     - a12*n2
n3=-----------
       a13


c33=0


c23=0


c22=0


c13=0


c12=0


b33=0


b31=0


b21=0


b13=0


b11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r215, r214, n1, n2, a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a13,r214,a12}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

                                  2
     2*u1*u2*a12*a13 + 2*u1*u3*a13  + u1*a13*n1 + u2*a13*n2 - u3*a12*n2
HAM=--------------------------------------------------------------------
                                    a13

has apart from the Hamiltonian and Casimirs the following 2 first integrals: 

     2     2     2
FI=u1  + u2  + u3

{HAM,FI} = 0



                            2    1               1               1
FI=u1*v2*a12*a13 + u1*v3*a13  + ---*v1*a13*n1 + ---*v2*a13*n2 - ---*v3*a12*n2
                                 2               2               2

{HAM,FI} = 0





And again in machine readable form:



HAM=(2*u1*u2*a12*a13 + 2*u1*u3*a13**2 + u1*a13*n1 + u2*a13*n2 - u3*a12*n2)/a13$

FI=u1**2 + u2**2 + u3**2$

FI=u1*v2*a12*a13 + u1*v3*a13**2 + 1/2*v1*a13*n1 + 1/2*v2*a13*n2 - 1/2*v3*a12*n2$