Solution 3 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
       2      2
0=4*a23  + a33


     2        2
0=a11  + 4*a23


Expressions

The solution is given through the following expressions:

      3      2        2         1         2    2         1      3    2
     ----*a11 *a33*b33 *r213 - ---*a11*a33 *b33 *r213 + ----*a33 *b33 *r213
      32                        8                        32
r20=------------------------------------------------------------------------
                                      2    3
                                   a11 *a23


      3      2    2         1             2         1      2    2
     ----*a11 *b33 *r213 - ---*a11*a33*b33 *r213 + ----*a33 *b33 *r213
      16                    4                       16
r21=-------------------------------------------------------------------
                                    2    2
                                 a11 *a23


r23=0


r24=0


      1      4    2    2         1     3    2        2
r25=(----*a11 *a33 *b33 *r213 + ---*a11 *a23 *a33*b33 *r213
      32                         8

         1      3    3    2         9      2    4    2
      - ----*a11 *a33 *b33 *r213 + ----*a11 *a23 *b33 *r213
         32                         32

         1      2    2    2    2         1      4    2    2           3    5
      - ----*a11 *a23 *a33 *b33 *r213 - ----*a23 *a33 *b33 *r213)/(a11 *a23 )
         16                              32


      1     2             1     2
     ---*a23 *b33*r213 + ---*a33 *b33*r213
      2                   4
r26=---------------------------------------
                        3
                     a23


         1                  1
      - ---*a11*b33*r213 + ---*a33*b33*r213
         4                  4
r27=----------------------------------------
                         2
                      a23


r28=0


         1              1
      - ---*a11*r213 + ---*a33*r213
         2              2
r29=--------------------------------
                  a23


          1         2             1         2
       - ---*a11*a23 *b33*r213 - ---*a11*a33 *b33*r213
          4                       8
r210=--------------------------------------------------
                               4
                            a23


r212=0


          1
       - ---*a11*r213
          2
r214=-----------------
            a23


r215=0


r216=0


       1     2                 3         2             1     2
      ---*a11 *a33*b33*r213 + ---*a11*a23 *b33*r213 - ---*a23 *a33*b33*r213
       4                       4                       4
r217=-----------------------------------------------------------------------
                                           3
                                    a11*a23


r218=0


r219=0


         1     3        2    9      2    2    2    1      2    2    2
      - ---*a11 *a33*b33  - ----*a11 *a23 *b33  + ----*a23 *a33 *b33
         8                   16                    16
c33=------------------------------------------------------------------
                                   3    2
                                a11 *a23


c23=0


      1     3    2        2    1      3    3    2    9      2    4    2
c22=(---*a11 *a23 *a33*b33  + ----*a11 *a33 *b33  - ----*a11 *a23 *b33
      8                        16                    16

         1      4    2    2      3    4
      + ----*a23 *a33 *b33 )/(a11 *a23 )
         16


c13=0


c12=0


b31=0


         1
      - ---*a33*b33
         2
b23=----------------
          a23


b21=0


      3             1
     ---*a11*b33 - ---*a33*b33
      2             2
b11=---------------------------
                a11


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r213, b33, a33, a11, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a33,r213,a11,a23,b33}


Relevance for the application:

Modulo the following equations:

       2      2
0=4*a23  + a33


     2        2
0=a11  + 4*a23


the system of equations related to the Hamiltonian HAM:

       2    4    4           3     3    4        1     2    4
HAM=(u1 *a11 *a23  + u1*v1*(---*a11 *a23 *b33 - ---*a11 *a23 *a33*b33)
                             2                   2

                   3    5    1           3    3             2    3    4
      + 2*u2*u3*a11 *a23  - ---*u2*v3*a11 *a23 *a33*b33 + u3 *a11 *a23 *a33
                             2

                 3    4         2   1     3    2        2    1      3    3    2
      + u3*v3*a11 *a23 *b33 + v2 *(---*a11 *a23 *a33*b33  + ----*a11 *a33 *b33
                                    8                        16

            9      2    4    2    1      4    2    2      2
         - ----*a11 *a23 *b33  + ----*a23 *a33 *b33 ) + v3
            16                    16

           1     3    2        2    9      2    4    2    1      4    2    2
     *( - ---*a11 *a23 *a33*b33  - ----*a11 *a23 *b33  + ----*a23 *a33 *b33 ))/(
           8                        16                    16

          3    4
       a11 *a23 )

has apart from the Hamiltonian and Casimirs only the following first integral: 

           1     4    2            3     3    4        1     2    4
FI=u1*v1*(---*a11 *a23 *a33*b33 + ---*a11 *a23 *b33 - ---*a11 *a23 *a33*b33)
           4                       4                   4

       1    2    4    4            3    5
    - ---*u2 *a11 *a23  + u2*u3*a11 *a23
       2

                 1     4    3        1     4        2
    + u2*v3*( - ---*a11 *a23 *b33 - ---*a11 *a23*a33 *b33)
                 4                   8

        2      1     4    4    1     3    4
    + u3 *( - ---*a11 *a23  + ---*a11 *a23 *a33)
               2               2

                 1     4    3        1     3    3
    + u3*v2*( - ---*a11 *a23 *b33 + ---*a11 *a23 *a33*b33)
                 4                   4

              1     3    4        1     3    2    2          2
    + u3*v3*(---*a11 *a23 *b33 + ---*a11 *a23 *a33 *b33) + v1 *(
              2                   4

       1      4    2    2    1     3    2        2    1      3    3    2
      ----*a11 *a33 *b33  + ---*a11 *a23 *a33*b33  - ----*a11 *a33 *b33
       32                    8                        32

          9      2    4    2    1      2    2    2    2    1      4    2    2
       + ----*a11 *a23 *b33  - ----*a11 *a23 *a33 *b33  - ----*a23 *a33 *b33 ) +
          32                    16                         32

    v2*v3

      3      3    3    2    1     2    3        2    1          3    2    2
   *(----*a11 *a23 *b33  - ---*a11 *a23 *a33*b33  + ----*a11*a23 *a33 *b33 ) + 
      16                    4                        16

     2   3      3    2        2    1     2    2    2    2
   v3 *(----*a11 *a23 *a33*b33  - ---*a11 *a23 *a33 *b33
         32                        8

            1          2    3    2
         + ----*a11*a23 *a33 *b33 )
            32

{HAM,FI} = 0





And again in machine readable form:



HAM=(u1**2*a11**4*a23**4 + u1*v1*(3/2*a11**3*a23**4*b33 - 1/2*a11**2*a23**4*a33*
b33) + 2*u2*u3*a11**3*a23**5 - 1/2*u2*v3*a11**3*a23**3*a33*b33 + u3**2*a11**3*
a23**4*a33 + u3*v3*a11**3*a23**4*b33 + v2**2*(1/8*a11**3*a23**2*a33*b33**2 + 1/
16*a11**3*a33**3*b33**2 - 9/16*a11**2*a23**4*b33**2 + 1/16*a23**4*a33**2*b33**2)
 + v3**2*( - 1/8*a11**3*a23**2*a33*b33**2 - 9/16*a11**2*a23**4*b33**2 + 1/16*a23
**4*a33**2*b33**2))/(a11**3*a23**4)$

FI=u1*v1*(1/4*a11**4*a23**2*a33*b33 + 3/4*a11**3*a23**4*b33 - 1/4*a11**2*a23**4*
a33*b33) - 1/2*u2**2*a11**4*a23**4 + u2*u3*a11**3*a23**5 + u2*v3*( - 1/4*a11**4*
a23**3*b33 - 1/8*a11**4*a23*a33**2*b33) + u3**2*( - 1/2*a11**4*a23**4 + 1/2*a11
**3*a23**4*a33) + u3*v2*( - 1/4*a11**4*a23**3*b33 + 1/4*a11**3*a23**3*a33*b33) +
 u3*v3*(1/2*a11**3*a23**4*b33 + 1/4*a11**3*a23**2*a33**2*b33) + v1**2*(1/32*a11
**4*a33**2*b33**2 + 1/8*a11**3*a23**2*a33*b33**2 - 1/32*a11**3*a33**3*b33**2 + 9
/32*a11**2*a23**4*b33**2 - 1/16*a11**2*a23**2*a33**2*b33**2 - 1/32*a23**4*a33**2
*b33**2) + v2*v3*(3/16*a11**3*a23**3*b33**2 - 1/4*a11**2*a23**3*a33*b33**2 + 1/
16*a11*a23**3*a33**2*b33**2) + v3**2*(3/32*a11**3*a23**2*a33*b33**2 - 1/8*a11**2
*a23**2*a33**2*b33**2 + 1/32*a11*a23**2*a33**3*b33**2)$