Solution 4 to problem over
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem over
Expressions
The solution is given through the following expressions:
i*m3*r212
r10=-----------
b33
r11=0
r12=0
r13=0
r14=0
r15=0
c12*r212 + i*c33*r212
r20=-----------------------
b33
r21=0
r22=0
r23=0
r24=0
r26=i*r212
r27=0
r28=0
r210=0
r213=0
r214=0
r215=0
r216= - r212
r217=0
r218=0
r219=0
r220=0
m1= - i*m2
n2=0
n1=0
c23=0
c22=2*i*c12
c13=0
c11=0
b32=0
b31=0
b23=0
b22=0
b21= - i*b33
b13=0
b12=i*b33
b11=0
a23=0
a22=0
a13=0
a12=0
a11=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
r212, m3, m2, c33, n3, b33, c12, a33
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{b33,a33,r212}
Relevance for the application:
The new Hamiltonian in form of a list of vanishing expressions:
{a11,
a12,
a13,
a22,
a23,
b11,
b12 - i*b33,
b13,
b21 + i*b33,
b22,
b23,
b31,
b32,
c11,
c13,
- 2*i*c12 + c22,
c23,
n1,
n2,
m1 + i*m2}$
The system of equations related to the Hamiltonian HAM:
2
HAM=i*u1*v2*b33 - i*u2*v1*b33 + u3 *a33 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12
2 2
- i*v1*m2 + 2*i*v2 *c12 + v2*m2 + v3 *c33 + v3*m3
has apart from the Hamiltonian and Casimirs only the following first integral:
2
FI= - u1*v2*b33 + u2*v1*b33 + i*u3*v3*b33 + v3 *(c12 + i*c33) + i*v3*m3
which the program can not factorize further.
{HAM,FI} = 0
And again in machine readable form:
HAM=i*u1*v2*b33 - i*u2*v1*b33 + u3**2*a33 + u3*v3*b33 + u3*n3 + 2*v1*v2*c12 - i*
v1*m2 + 2*i*v2**2*c12 + v2*m2 + v3**2*c33 + v3*m3$
FI= - u1*v2*b33 + u2*v1*b33 + i*u3*v3*b33 + v3**2*(c12 + i*c33) + i*v3*m3$