Solution 3 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


         1       2
      - ---*m2*n3 *r464
         4
r11=--------------------
               3
            a22


      1               2         1     2   3         1     2   3
     ---*a22*b32*m2*n3 *r464 - ---*b31 *n3 *r464 - ---*b32 *n3 *r464
      4                         8                   8
r12=-----------------------------------------------------------------
                                   4
                                a22 *b31


         1    3
      - ---*n3 *r464
         4
r13=-----------------
             3
          a22


r14=0


r15=0


      1     2    2   2         1         2
r20=(---*a22 *b32 *m2 *r464 - ---*a22*b31 *b32*m2*n3*r464
      4                        4

         1         3               1     4   2         3      2    2   2
      - ---*a22*b32 *m2*n3*r464 + ---*b31 *n3 *r464 + ----*b31 *b32 *n3 *r464
         4                         8                   16

         1      4   2           4    2
      + ----*b32 *n3 *r464)/(a22 *b31 )
         16


r21=0


r23=0


         1            2         1     2               1     2
      - ---*a22*b32*m2 *r464 + ---*b31 *m2*n3*r464 + ---*b32 *m2*n3*r464
         2                      4                     4
r24=---------------------------------------------------------------------
                                     3
                                  a22 *b31


         1     2    2   2         1     2    2   2
r25=( - ---*a22 *b31 *m2 *r464 + ---*a22 *b32 *m2 *r464
         4                        4

         1         2                   1         3
      - ---*a22*b31 *b32*m2*n3*r464 - ---*a22*b32 *m2*n3*r464
         4                             4

         1      4   2         1     2    2   2         1      4   2           4
      + ----*b31 *n3 *r464 + ---*b31 *b32 *n3 *r464 + ----*b32 *n3 *r464)/(a22
         16                   8                        16

       2
   *b31 )


r26=0


      1                    1        2
     ---*a22*m2*n3*r464 - ---*b32*n3 *r464
      2                    4
r27=---------------------------------------
                        3
                     a22


         1                        1     2   2
      - ---*a22*b32*m2*n3*r464 + ---*b32 *n3 *r464
         2                        4
r28=-----------------------------------------------
                          3
                       a22 *b31


         1    2
      - ---*n3 *r464
         4
r29=-----------------
             2
          a22


          1
       - ---*m2*n3*r464
          2
r210=-------------------
               2
            a22


r212=0


r213=0


r214=0


       1                        1     2   2         1     2   2
      ---*a22*b32*m2*n3*r464 - ---*b31 *n3 *r464 - ---*b32 *n3 *r464
       2                        4                   4
r215=----------------------------------------------------------------
                                    3
                                 a22 *b31


r216=0


r217=0


r218=0


r219=0


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


       1     2            1     2
      ---*b31 *n3*r464 + ---*b32 *n3*r464
       4                  4
r310=-------------------------------------
                        3
                     a22


r311=0


       1
      ---*b32*m2*r464
       2
r312=-----------------
              2
           a22


r313=0


       1         2            1         2            1     2
r314=(---*a22*b31 *m2*r464 - ---*a22*b32 *m2*r464 + ---*b31 *b32*n3*r464
       2                      2                      4

          1     3              3
       + ---*b32 *n3*r464)/(a22 *b31)
          4


          1                     1     2            1     2
       - ---*a22*b32*m2*r464 + ---*b31 *n3*r464 + ---*b32 *n3*r464
          2                     4                  4
r315=--------------------------------------------------------------
                                     3
                                  a22


r316=0


                     1
      a22*m2*r464 + ---*b32*n3*r464
                     2
r317=-------------------------------
                     2
                  a22


                              2            1     2
       - a22*b32*m2*r464 + b31 *n3*r464 + ---*b32 *n3*r464
                                           2
r318=------------------------------------------------------
                               2
                            a22 *b31


      n3*r464
r319=---------
        a22


r320=0


r323=0


r325=0


                        1
       - a22*m2*r464 - ---*b32*n3*r464
                        2
r326=----------------------------------
                       2
                    a22


r328=0


r329=0


r330=0


r332=0


      n3*r464
r333=---------
        a22


r334=0


r335=0


r336=0


r337=0


r338=0


r339=0


r340=0


                           2            1     2
      a22*b32*m2*r464 - b31 *n3*r464 - ---*b32 *n3*r464
                                        2
r341=---------------------------------------------------
                             2
                          a22 *b31


r342=0


r343=0


r344=0


r345=0


r347=0


r348=0


r349=0


r350=0


r351=0


r352=0


      n3*r464
r353=---------
        a22


r354=0


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


       1     2         1     2
      ---*b31 *r464 + ---*b32 *r464
       4               4
r425=-------------------------------
                     2
                  a22


r426=0


       1     2
      ---*b32 *r464
       4
r427=---------------
             2
          a22


r428=0


       1
      ---*b31*b32*r464
       2
r429=------------------
               2
            a22


       1     2
      ---*b31 *r464
       4
r430=---------------
             2
          a22


r431=0


      b32*r464
r432=----------
        a22


      b31*r464
r433=----------
        a22


r434=r464


r435=0


r439=0


r442=0


r444=0


r445=0


r448=0


r450=0


       - b32*r464
r451=-------------
          a22


r453=0


r454=0


r455=0


r458=0


r460=0


r461=0


r463=0


r465=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


       - b31*r464
r486=-------------
          a22


r487=0


r488=0


r489=0


r490=0


r493=0


r495=0


r496=0


r498=0


r499=0


r4100=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=r464


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


m3=0


                     1     2       1     2
     - a22*b32*m2 + ---*b31 *n3 + ---*b32 *n3
                     2             2
m1=-------------------------------------------
                     a22*b31


n2=0


n1=0


         1     2    1     2
      - ---*b31  - ---*b32
         4          4
c33=------------------------
              a22


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33=2*a22


a23=0


a13=0


a12=0


a11=a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r464, m2, n3, b32, b31, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a11,a22,r464}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - a22,
a12,
a13,
a23,
 - 2*a22 + a33,
b11,
b12,
b13,
b21,
b22,
b23,
b33,
c11,
c12,
c13,
c22,
c23,
a22*c33 + 1/4*b31**2 + 1/4*b32**2,
n1,
n2,
a22*b31*m1 + a22*b32*m2 - 1/2*b31**2*n3 - 1/2*b32**2*n3,
m3}$

The system of equations related to the Hamiltonian HAM:

      2         2           2
HAM=u1 *a22 + u2 *a22 + 2*u3 *a22 + u3*v1*b31 + u3*v2*b32 + u3*n3

                            1     2       1     2
            - a22*b32*m2 + ---*b31 *n3 + ---*b32 *n3
                            2             2
     + v1*------------------------------------------- + v2*m2
                            a22*b31

                1     2    1     2
             - ---*b31  - ---*b32
         2      4          4
     + v3 *------------------------
                     a22

has apart from the Hamiltonian and Casimirs only the following first integral: 

     2   2    4    2     2       3    2           2       3    3
FI=u1 *u3 *a22 *b31  + u1 *u3*a22 *b31 *n3 - u1*u3 *v3*a22 *b31

                   3                 2    3       1     2        2
    + u1*u3*v3*(a22 *b31*b32*m2 - a22 *b31 *n3 - ---*a22 *b31*b32 *n3)
                                                  2

              1     2                  1         3   2    1             2   2
    + u1*v3*(---*a22 *b31*b32*m2*n3 - ---*a22*b31 *n3  - ---*a22*b31*b32 *n3 )
              2                        4                  4

        2   2    4    2     2       3    2           2       3    2
    + u2 *u3 *a22 *b31  + u2 *u3*a22 *b31 *n3 - u2*u3 *v3*a22 *b31 *b32

                      3    2       1     2    2
    + u2*u3*v3*( - a22 *b31 *m2 - ---*a22 *b31 *b32*n3)
                                   2

       1           2    2           4    4    2     3       3    3
    - ---*u2*v3*a22 *b31 *m2*n3 + u3 *a22 *b31  + u3 *v1*a22 *b31
       2

        3       3    2         3    3    2       1    2   2    2    4
    + u3 *v2*a22 *b31 *b32 + u3 *a22 *b31 *n3 + ---*u3 *v1 *a22 *b31
                                                 4

       1    2          2    3
    + ---*u3 *v1*v2*a22 *b31 *b32
       2

        2           3                 2    3       1     2        2
    + u3 *v1*( - a22 *b31*b32*m2 + a22 *b31 *n3 + ---*a22 *b31*b32 *n3)
                                                   2

       1    2   2    2    2    2     2        3    2       1     2    2
    + ---*u3 *v2 *a22 *b31 *b32  + u3 *v2*(a22 *b31 *m2 + ---*a22 *b31 *b32*n3)
       4                                                   2

        2   2   1     2    4    1     2    2    2     1    2    2    2   2
    + u3 *v3 *(---*a22 *b31  + ---*a22 *b31 *b32 ) - ---*u3 *a22 *b31 *n3
                4               4                     4

           2      1     2    2           1         4       1         2    2
    + u3*v1 *( - ---*a22 *b31 *b32*m2 + ---*a22*b31 *n3 + ---*a22*b31 *b32 *n3) 
                  2                      4                 4

                1     2    3       1     2        2       1         3
   + u3*v1*v2*(---*a22 *b31 *m2 - ---*a22 *b31*b32 *m2 + ---*a22*b31 *b32*n3
                2                  2                      4

                   1             3
                + ---*a22*b31*b32 *n3)
                   4

                 1     2                  1             2   2
    + u3*v1*( - ---*a22 *b31*b32*m2*n3 + ---*a22*b31*b32 *n3 )
                 2                        4

       1       2    2    2
    + ---*u3*v2 *a22 *b31 *b32*m2
       2

              1     2    2          1         2       2
    + u3*v2*(---*a22 *b31 *m2*n3 - ---*a22*b31 *b32*n3 )
              2                     4

           2   1         4       1         2    2        1            2   3
    + u3*v3 *(---*a22*b31 *n3 + ---*a22*b31 *b32 *n3) - ---*u3*a22*b31 *n3  + 
               4                 4                       4

     2      1     2    2   2    1     2    2   2    1         2
   v1 *( - ---*a22 *b31 *m2  + ---*a22 *b32 *m2  - ---*a22*b31 *b32*m2*n3
            4                   4                   4

            1         3          1      4   2    1     2    2   2
         - ---*a22*b32 *m2*n3 + ----*b31 *n3  + ---*b31 *b32 *n3
            4                    16              8

            1      4   2
         + ----*b32 *n3 ) + v1*v2
            16

         1     2           2    1         3          1             2
   *( - ---*a22 *b31*b32*m2  + ---*a22*b31 *m2*n3 + ---*a22*b31*b32 *m2*n3)
         2                      4                    4

           1                   2    1     3   3    1         2   3
    + v1*(---*a22*b31*b32*m2*n3  - ---*b31 *n3  - ---*b31*b32 *n3 )
           4                        8              8

       1            2      2     2   1     2    2   2    1         2
    - ---*v2*a22*b31 *m2*n3  + v3 *(---*a22 *b32 *m2  - ---*a22*b31 *b32*m2*n3
       4                             4                   4

          1         3          1     4   2    3      2    2   2    1      4   2
       - ---*a22*b32 *m2*n3 + ---*b31 *n3  + ----*b31 *b32 *n3  + ----*b32 *n3 )
          4                    8              16                   16

which the program can not factorize further.

{HAM,FI} = {2,

             - a22,

            a22,

            u1*v1 + u2*v2 + u3*v3,

            b31,

                      1
            u3*a22 + ---*n3,
                      2

                                                                2
             - u1*u3*a22*b31*b32 - u1*a22*b31*m2 + u2*u3*a22*b31

                                    1     2       1     2
             + u2*( - a22*b32*m2 + ---*b31 *n3 + ---*b32 *n3)}
                                    2             2





And again in machine readable form:



HAM=u1**2*a22 + u2**2*a22 + 2*u3**2*a22 + u3*v1*b31 + u3*v2*b32 + u3*n3 + v1*( -
 a22*b32*m2 + 1/2*b31**2*n3 + 1/2*b32**2*n3)/(a22*b31) + v2*m2 + v3**2*( - 1/4*
b31**2 - 1/4*b32**2)/a22$

FI=u1**2*u3**2*a22**4*b31**2 + u1**2*u3*a22**3*b31**2*n3 - u1*u3**2*v3*a22**3*
b31**3 + u1*u3*v3*(a22**3*b31*b32*m2 - a22**2*b31**3*n3 - 1/2*a22**2*b31*b32**2*
n3) + u1*v3*(1/2*a22**2*b31*b32*m2*n3 - 1/4*a22*b31**3*n3**2 - 1/4*a22*b31*b32**
2*n3**2) + u2**2*u3**2*a22**4*b31**2 + u2**2*u3*a22**3*b31**2*n3 - u2*u3**2*v3*
a22**3*b31**2*b32 + u2*u3*v3*( - a22**3*b31**2*m2 - 1/2*a22**2*b31**2*b32*n3) - 
1/2*u2*v3*a22**2*b31**2*m2*n3 + u3**4*a22**4*b31**2 + u3**3*v1*a22**3*b31**3 + 
u3**3*v2*a22**3*b31**2*b32 + u3**3*a22**3*b31**2*n3 + 1/4*u3**2*v1**2*a22**2*b31
**4 + 1/2*u3**2*v1*v2*a22**2*b31**3*b32 + u3**2*v1*( - a22**3*b31*b32*m2 + a22**
2*b31**3*n3 + 1/2*a22**2*b31*b32**2*n3) + 1/4*u3**2*v2**2*a22**2*b31**2*b32**2 +
 u3**2*v2*(a22**3*b31**2*m2 + 1/2*a22**2*b31**2*b32*n3) + u3**2*v3**2*(1/4*a22**
2*b31**4 + 1/4*a22**2*b31**2*b32**2) - 1/4*u3**2*a22**2*b31**2*n3**2 + u3*v1**2*
( - 1/2*a22**2*b31**2*b32*m2 + 1/4*a22*b31**4*n3 + 1/4*a22*b31**2*b32**2*n3) + 
u3*v1*v2*(1/2*a22**2*b31**3*m2 - 1/2*a22**2*b31*b32**2*m2 + 1/4*a22*b31**3*b32*
n3 + 1/4*a22*b31*b32**3*n3) + u3*v1*( - 1/2*a22**2*b31*b32*m2*n3 + 1/4*a22*b31*
b32**2*n3**2) + 1/2*u3*v2**2*a22**2*b31**2*b32*m2 + u3*v2*(1/2*a22**2*b31**2*m2*
n3 - 1/4*a22*b31**2*b32*n3**2) + u3*v3**2*(1/4*a22*b31**4*n3 + 1/4*a22*b31**2*
b32**2*n3) - 1/4*u3*a22*b31**2*n3**3 + v1**2*( - 1/4*a22**2*b31**2*m2**2 + 1/4*
a22**2*b32**2*m2**2 - 1/4*a22*b31**2*b32*m2*n3 - 1/4*a22*b32**3*m2*n3 + 1/16*b31
**4*n3**2 + 1/8*b31**2*b32**2*n3**2 + 1/16*b32**4*n3**2) + v1*v2*( - 1/2*a22**2*
b31*b32*m2**2 + 1/4*a22*b31**3*m2*n3 + 1/4*a22*b31*b32**2*m2*n3) + v1*(1/4*a22*
b31*b32*m2*n3**2 - 1/8*b31**3*n3**3 - 1/8*b31*b32**2*n3**3) - 1/4*v2*a22*b31**2*
m2*n3**2 + v3**2*(1/4*a22**2*b32**2*m2**2 - 1/4*a22*b31**2*b32*m2*n3 - 1/4*a22*
b32**3*m2*n3 + 1/8*b31**4*n3**2 + 3/16*b31**2*b32**2*n3**2 + 1/16*b32**4*n3**2)$