Solution 3 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

                                                             2   2
r10=( - 4*a33*b13*m2*n3*r342 - 8*i*a33*c13*n1*n3*r342 + i*b13 *n1 *r342

             2   2               2   2             2    2
      + i*b13 *n2 *r342 - 2*i*b13 *n3 *r342)/(4*a33 *b13 )


r11=( - i*a33*b13*m2*n1*r342 - a33*b13*m2*n2*r342 - 4*i*a33*c13*n1*n2*r342

             2                   2    2
      - i*b13 *n2*n3*r342)/(2*a33 *b13 )


                                                                  2
r12=( - a33*b13*m2*n1*r342 + i*a33*b13*m2*n2*r342 - 2*i*a33*c13*n1 *r342

                      2             2                   2    2
      + 2*i*a33*c13*n2 *r342 - i*b13 *n1*n3*r342)/(2*a33 *b13 )


      - i*n1*n3*r342 + n2*n3*r342
r13=------------------------------
              2*a33*b13


                         2
      - i*n1*n2*r342 + n2 *r342
r14=----------------------------
             2*a33*b13


            2
      - i*n1 *r342 + n1*n2*r342
r15=----------------------------
             2*a33*b13


             2                          2    2                2    2
r20=( - 8*a33 *b13*c13*m2*r342 - 8*i*a33 *c13 *n1*r342 - 8*a33 *c13 *n2*r342

                   2                    4              4                2    3
      + 4*i*a33*b13 *c13*n3*r342 + i*b13 *n1*r342 + b13 *n2*r342)/(4*a33 *b13 )


                               2
      - 4*a33*c13*n1*r342 - b13 *n3*r342
r21=-------------------------------------
                      2
                 2*a33 *b13


r22=0


                              2
     4*a33*c13*n2*r342 - i*b13 *n3*r342
r23=------------------------------------
                      2
                 2*a33 *b13


r24=0


                                                       2
      - 2*a33*b13*m2*r342 - 4*i*a33*c13*n1*r342 - i*b13 *n3*r342
r26=-------------------------------------------------------------
                                      2
                             2*a33*b13


      - n1*r342 + i*n2*r342
r27=------------------------
             2*a33


     i*n1*r342 + n2*r342
r28=---------------------
            2*a33


       - i*n2*r342
r210=--------------
          a33


                                                        2
       - 2*i*a33*b13*m2*r342 - 4*i*a33*c13*n2*r342 - b13 *n3*r342
r212=-------------------------------------------------------------
                                       2
                              2*a33*b13


r213=0


      i*n1*r342 - n2*r342
r214=---------------------
             2*b13


       - i*n1*r342
r215=--------------
          a33


                                                     2
      2*i*a33*b13*m2*r342 + 4*i*a33*c13*n2*r342 + b13 *n3*r342
r216=----------------------------------------------------------
                                      2
                             2*a33*b13


r217=0


r218=0


r219=0


      i*n1*r342 - n2*r342
r220=---------------------
             2*b13


r30=0


r31=0


               2
      - 4*i*c13 *r342
r32=------------------
              2
           b13


     c13*r342
r33=----------
       a33


r34=0


r35=0


     i*c13*r342
r36=------------
        a33


               2
      - 4*i*c13 *r342
r37=------------------
              2
           b13


     c13*r342
r38=----------
       a33


     i*c13*r342
r39=------------
        a33


r310=0


r311=0


       - 2*i*c13*r342
r312=-----------------
            b13


r313=0


r314=0


       - 2*i*c13*r342
r315=-----------------
            b13


r316=0


r317=0


r318=0


r319=0


r320=0


r321=0


      b13*r342
r322=----------
       2*a33


       - 4*c13*r342
r323=---------------
           b13


r324=0


      b13*r342
r325=----------
       2*a33


r326=0


r327= - i*r342


r328= - r342


r329=0


r330=i*r342


r331=0


r332=0


r333=0


r334=0


r335=0


      4*c13*r342
r336=------------
         b13


      i*b13*r342
r337=------------
        2*a33


r338=0


r339=0


      i*b13*r342
r340=------------
        2*a33


r341=0


r343= - i*r342


r344=0


r345=0


r346=0


r347=0


r348=0


r349=0


r350=i*r342


r351=0


r352=0


r353=0


r354=0


r355=0


     - b13*n1 + i*b13*n2
m3=----------------------
           2*a33


    i*b13*m2 - 2*c13*n1 + 2*i*c13*n2
m1=----------------------------------
                  b13


        2
     b13
c33=-------
     4*a33


c23= - i*c13


        2
     b13
c22=-------
     2*a33


          2
     i*b13
c12=--------
     4*a33


c11=0


b33=0


b32=0


b31=0


b23= - i*b13


b22=0


b21=0


b12=0


b11=0


a23=0


a22=0


a13=0


a12=0


a11=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r342, m2, n3, n1, n2, c13, b13, a33

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{r342,b13,a33}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11,
a12,
a13,
a22,
a23,
b11,
b12,
b21,
b22,
i*b13 + b23,
b31,
b32,
b33,
c11,
4*a33*c12 - i*b13**2,
2*a33*c22 - b13**2,
i*c13 + c23,
4*a33*c33 - b13**2,
b13*m1 - i*b13*m2 + 2*c13*n1 - 2*i*c13*n2,
2*a33*m3 + b13*n1 - i*b13*n2}$

The system of equations related to the Hamiltonian HAM:

                                                                            2
                                                2                i*v1*v2*b13
HAM=u1*v3*b13 + u1*n1 - i*u2*v3*b13 + u2*n2 + u3 *a33 + u3*n3 + --------------
                                                                    2*a33

                                                                2    2
                         i*b13*m2 - 2*c13*n1 + 2*i*c13*n2     v2 *b13
     + 2*v1*v3*c13 + v1*---------------------------------- + ----------
                                       b13                     2*a33

                                  2    2
                                v3 *b13          - b13*n1 + i*b13*n2
     - 2*i*v2*v3*c13 + v2*m2 + ---------- + v3*----------------------
                                 4*a33                 2*a33

has apart from the Hamiltonian and Casimirs only the following first integral: 

         2       2    3     2         2    2           2    2
FI=4*i*u1 *v3*a33 *b13  + u1 *(2*i*a33 *b13 *n1 - 2*a33 *b13 *n2)

                      2    3                 2    3            2        4
    - 4*i*u1*u3*v1*a33 *b13  + 4*u1*u3*v2*a33 *b13  + 2*i*u1*v1 *a33*b13

               2        4                  2    2
    + 2*i*u1*v2 *a33*b13  + 16*u1*v2*v3*a33 *b13 *c13

                    2    2             2                       3
    + u1*v2*(4*i*a33 *b13 *m2 + 8*i*a33 *b13*c13*n2 + 2*a33*b13 *n3)

                       3                        2   2            2
    - 4*i*u1*v3*a33*b13 *n1 + u1*( - 2*i*a33*b13 *n1  + 2*a33*b13 *n1*n2)

            2       2    3     2         2    2           2    2
    + 4*i*u2 *v3*a33 *b13  + u2 *(2*i*a33 *b13 *n1 - 2*a33 *b13 *n2)

                    2    3                   2    3          2        4
    - 4*u2*u3*v1*a33 *b13  - 4*i*u2*u3*v2*a33 *b13  + 2*u2*v1 *a33*b13

                     2    2
    - 16*u2*v1*v3*a33 *b13 *c13

                       2    2             2                       3
    + u2*v1*( - 4*i*a33 *b13 *m2 - 8*i*a33 *b13*c13*n2 - 2*a33*b13 *n3)

             2        4                    3
    + 2*u2*v2 *a33*b13  - 4*i*u2*v3*a33*b13 *n2

                        2                  2   2             2    2    2
    + u2*( - 2*i*a33*b13 *n1*n2 + 2*a33*b13 *n2 ) - 8*i*u3*v1 *a33 *b13 *c13

                        3               3                2    2    2
    + u3*v1*(2*i*a33*b13 *n1 + 2*a33*b13 *n2) - 8*i*u3*v2 *a33 *b13 *c13

                         3                 3
    + u3*v2*( - 2*a33*b13 *n1 + 2*i*a33*b13 *n2)

                     2    2             2                         3
    + u3*v3*( - 4*a33 *b13 *m2 - 8*i*a33 *b13*c13*n1 - 2*i*a33*b13 *n3)

                        2                  2                3        3
    + u3*( - 2*i*a33*b13 *n1*n3 + 2*a33*b13 *n2*n3) + 4*i*v1 *a33*b13 *c13

          2           3              2       2        2
    + 4*v1 *v2*a33*b13 *c13 - 16*i*v1 *v3*a33 *b13*c13

               2        3                       2                 4
    + 4*i*v1*v2 *a33*b13 *c13 + v1*v3*(8*a33*b13 *c13*n2 - 2*i*b13 *n3) + v1*(

                  2                    2                           2
       - 2*a33*b13 *m2*n1 + 2*i*a33*b13 *m2*n2 - 4*i*a33*b13*c13*n1

                           2          3              3        3
       + 4*i*a33*b13*c13*n2  - 2*i*b13 *n1*n3) + 4*v2 *a33*b13 *c13

             2       2        2                      2               4
    - 16*i*v2 *v3*a33 *b13*c13  + v2*v3*( - 8*a33*b13 *c13*n1 - 2*b13 *n3) + v2*

                  2                  2
   ( - 2*i*a33*b13 *m2*n1 - 2*a33*b13 *m2*n2 - 8*i*a33*b13*c13*n1*n2

              3            2          2                     2    2
     - 2*i*b13 *n2*n3) + v3 *( - 8*a33 *b13*c13*m2 - 8*i*a33 *c13 *n1

              2    2                 2               4         4
       - 8*a33 *c13 *n2 + 4*i*a33*b13 *c13*n3 + i*b13 *n1 + b13 *n2) + v3*(

                  2                                      3   2        3   2
       - 4*a33*b13 *m2*n3 - 8*i*a33*b13*c13*n1*n3 + i*b13 *n1  + i*b13 *n2

                3   2
       - 2*i*b13 *n3 )
Stop of a subroutine.
Number of garbage collections exceeds max_gc_fac.
The factorization crashed!

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=u1*v3*b13 + u1*n1 - i*u2*v3*b13 + u2*n2 + u3**2*a33 + u3*n3 + (i*v1*v2*b13**
2)/(2*a33) + 2*v1*v3*c13 + v1*(i*b13*m2 - 2*c13*n1 + 2*i*c13*n2)/b13 + (v2**2*
b13**2)/(2*a33) - 2*i*v2*v3*c13 + v2*m2 + (v3**2*b13**2)/(4*a33) + v3*( - b13*n1
 + i*b13*n2)/(2*a33)$

FI=4*i*u1**2*v3*a33**2*b13**3 + u1**2*(2*i*a33**2*b13**2*n1 - 2*a33**2*b13**2*n2
) - 4*i*u1*u3*v1*a33**2*b13**3 + 4*u1*u3*v2*a33**2*b13**3 + 2*i*u1*v1**2*a33*b13
**4 + 2*i*u1*v2**2*a33*b13**4 + 16*u1*v2*v3*a33**2*b13**2*c13 + u1*v2*(4*i*a33**
2*b13**2*m2 + 8*i*a33**2*b13*c13*n2 + 2*a33*b13**3*n3) - 4*i*u1*v3*a33*b13**3*n1
 + u1*( - 2*i*a33*b13**2*n1**2 + 2*a33*b13**2*n1*n2) + 4*i*u2**2*v3*a33**2*b13**
3 + u2**2*(2*i*a33**2*b13**2*n1 - 2*a33**2*b13**2*n2) - 4*u2*u3*v1*a33**2*b13**3
 - 4*i*u2*u3*v2*a33**2*b13**3 + 2*u2*v1**2*a33*b13**4 - 16*u2*v1*v3*a33**2*b13**
2*c13 + u2*v1*( - 4*i*a33**2*b13**2*m2 - 8*i*a33**2*b13*c13*n2 - 2*a33*b13**3*n3
) + 2*u2*v2**2*a33*b13**4 - 4*i*u2*v3*a33*b13**3*n2 + u2*( - 2*i*a33*b13**2*n1*
n2 + 2*a33*b13**2*n2**2) - 8*i*u3*v1**2*a33**2*b13**2*c13 + u3*v1*(2*i*a33*b13**
3*n1 + 2*a33*b13**3*n2) - 8*i*u3*v2**2*a33**2*b13**2*c13 + u3*v2*( - 2*a33*b13**
3*n1 + 2*i*a33*b13**3*n2) + u3*v3*( - 4*a33**2*b13**2*m2 - 8*i*a33**2*b13*c13*n1
 - 2*i*a33*b13**3*n3) + u3*( - 2*i*a33*b13**2*n1*n3 + 2*a33*b13**2*n2*n3) + 4*i*
v1**3*a33*b13**3*c13 + 4*v1**2*v2*a33*b13**3*c13 - 16*i*v1**2*v3*a33**2*b13*c13
**2 + 4*i*v1*v2**2*a33*b13**3*c13 + v1*v3*(8*a33*b13**2*c13*n2 - 2*i*b13**4*n3) 
+ v1*( - 2*a33*b13**2*m2*n1 + 2*i*a33*b13**2*m2*n2 - 4*i*a33*b13*c13*n1**2 + 4*i
*a33*b13*c13*n2**2 - 2*i*b13**3*n1*n3) + 4*v2**3*a33*b13**3*c13 - 16*i*v2**2*v3*
a33**2*b13*c13**2 + v2*v3*( - 8*a33*b13**2*c13*n1 - 2*b13**4*n3) + v2*( - 2*i*
a33*b13**2*m2*n1 - 2*a33*b13**2*m2*n2 - 8*i*a33*b13*c13*n1*n2 - 2*i*b13**3*n2*n3
) + v3**2*( - 8*a33**2*b13*c13*m2 - 8*i*a33**2*c13**2*n1 - 8*a33**2*c13**2*n2 + 
4*i*a33*b13**2*c13*n3 + i*b13**4*n1 + b13**4*n2) + v3*( - 4*a33*b13**2*m2*n3 - 8
*i*a33*b13*c13*n1*n3 + i*b13**3*n1**2 + i*b13**3*n2**2 - 2*i*b13**3*n3**2)$