Solution 5 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


      1
     ---*b33*r14
      2
r11=-------------
         a22


r12=0


r13=0


r15=0


      1     3            1      2   2
     ---*a22 *b33*r26 - ----*b33 *n2 *r464
      4                  16
r20=---------------------------------------
                        4
                     a22


r21=0


r23=0


r24=0


      1     3            1      2   2
     ---*a22 *b33*r26 - ----*b33 *n2 *r464
      4                  16
r25=---------------------------------------
                        4
                     a22


r27=0


r28=0


      - 2*a22*r14
r29=--------------
          n2


r210=0


r212=0


r213=0


            3        1        2
       - a22 *r26 - ---*b33*n2 *r464
                     4
r214=--------------------------------
                    2
                 a22 *b33


r215=0


r216=0


r217=r26


r218=0


r219=0


r30=0


      1      3
     ----*b33 *n2*r464
      16
r31=-------------------
              4
           a22


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


r310=0


          1                     1     2
       - ---*a22*b33*n2*r488 - ---*b33 *n2*r464
          4                     4
r311=-------------------------------------------
                           3
                        a22


r312=0


r313=0


r314=0


r315=0


r316=0


           3        1        2
      2*a22 *r26 - ---*b33*n2 *r464
                    4
r317=-------------------------------
                    2
                 a22 *n2


r318=0


r319=0


       1     2
      ---*b33 *n2*r464
       8
r320=------------------
               3
            a22


r321=0


          1
       - ---*b33*n2*r488
          4
r322=--------------------
                2
             a22


r323=0


r324=0


r325=0


          1                 1
       - ---*a22*n2*r488 - ---*b33*n2*r464
          2                 2
r326=--------------------------------------
                         2
                      a22


r327=0


r328=0


           3        1        2
      4*a22 *r26 + ---*b33*n2 *r464
                    2
r329=-------------------------------
               a22*b33*n2


r330=0


          1                 1
       - ---*a22*n2*r488 - ---*b33*n2*r464
          2                 4
r331=--------------------------------------
                         2
                      a22


r332=0


r333=0


          1
       - ---*n2*r464
          2
r334=----------------
           a22


r335=0


r336=0


r337=0


r338=0


          1
       - ---*b33*n2*r488
          4
r339=--------------------
                2
             a22


r340=0


r341=0


r342=0


r343=0


r344=0


r345=0


r346=0


          1
       - ---*n2*r488
          2
r347=----------------
           a22


r348=0


r349=0


r350=0


          1
       - ---*b33*n2*r464
          4
r351=--------------------
                2
             a22


r352=0


r353=0


          1
       - ---*n2*r464
          2
r354=----------------
           a22


r355=0


r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


          1     2
       - ---*b33 *r464
          4
r425=------------------
               2
            a22


r426=0


r427=0


r428=0


r429=0


r430=0


      a22*r488 + b33*r464
r431=---------------------
              a22


r432=0


r433=0


              3
       - 4*a22 *r26
r434=---------------
               2
         b33*n2


r435=0


r436=0


r437=0


r439=0


r440=0


r441=0


r442=0


r443=0


r444=0


r445=0


r446=0


r447=0


r448=0


r449=0


r450=0


r451=0


r452=r488


r453=0


r454=0


r455=0


r456=0


r458=0


r459=0


r460=0


r461=0


r462=0


r463=0


r465=0


r466=0


r467=0


r468=0


r469=0


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=0


r484=0


r485=0


r486=0


r487=0


r489=0


r490=0


r491=0


r492=0


r493=0


r494=0


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4102=0


r4103=0


r4104=0


r4105=0


r4106=0


r4108=0


r4109=0


r4110=0


r4111=0


r4112=0


r4113=0


r4114=r464


r4115=0


r4117=0


r4118=0


r4119=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


m3=0


m2=0


m1=0


n3=0


n1=0


         1     2
      - ---*b33
         4
c33=-------------
         a22


c23=0


c22=0


c13=0


c12=0


c11=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33= - a22


a23=0


a13=0


a12=0


a11=a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r14, r26, r488, r464, b33, n2, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{b33,n2,r464,a11,a22}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - a22,
a12,
a13,
a23,
a22 + a33,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
c11,
c12,
c13,
c22,
c23,
a22*c33 + 1/4*b33**2,
n1,
n3,
m1,
m2,
m3}$

The system of equations related to the Hamiltonian HAM:

                                                           1    2    2
                                                        - ---*v3 *b33
      2         2                 2                        4
HAM=u1 *a22 + u2 *a22 + u2*n2 - u3 *a22 + u3*v3*b33 + -----------------
                                                             a22

has apart from the Hamiltonian and Casimirs the following 4 first integrals: 

       1    2       3        2   2    4    1    2       2
FI= - ---*u1 *u2*a22 *n2 + u1 *u3 *a22  - ---*u1 *v2*a22 *b33*n2
       2                                   4

       1    3    3        2   2    4    1    2       2           1    2    2   2
    - ---*u2 *a22 *n2 + u2 *u3 *a22  - ---*u2 *v2*a22 *b33*n2 - ---*u2 *a22 *n2
       2                                4                        4

       1       2    3       1              2           1       2        2
    + ---*u2*u3 *a22 *n2 - ---*u2*u3*v3*a22 *b33*n2 + ---*u2*v3 *a22*b33 *n2
       2                    2                          8

        3       3        1    2       2           1    2   2    2    2
    + u3 *v3*a22 *b33 - ---*u3 *v2*a22 *b33*n2 - ---*u3 *v3 *a22 *b33
                         4                        4

       1                  2       1     2    2   2    1        2    3
    - ---*u3*v2*v3*a22*b33 *n2 - ----*v1 *b33 *n2  + ----*v2*v3 *b33 *n2
       4                          16                  16

       1     2    2   2
    - ----*v3 *b33 *n2
       16

which the program can not factorize further.

{HAM,FI} = 0



       1                         2       2    1
FI= - ---*u1*u2*v1*a22*n2 + u1*u3 *v1*a22  - ---*u1*v1*v2*b33*n2
       2                                      4

       1    2                  2       2    1
    - ---*u2 *v2*a22*n2 + u2*u3 *v2*a22  - ---*u2*u3*v3*a22*n2
       2                                    2

       1       2            3       2    1
    - ---*u2*v2 *b33*n2 + u3 *v3*a22  - ---*u3*v2*v3*b33*n2
       4                                 4

  = a product of the elements of: {u1*v1 + u2*v2 + u3*v3,

       1                2    2    1
    - ---*u2*a22*n2 + u3 *a22  - ---*v2*b33*n2}
       2                          4

{HAM,FI} = 0



                   2     2    2   2          2    3          4    4
FI=u1*v1*a22*b33*n2  - u2 *a22 *n2  + 4*u2*u3 *a22 *n2 - 4*u3 *a22

          2       2                          2    1    2    2   2
    + 2*u3 *v2*a22 *b33*n2 + u3*v3*a22*b33*n2  + ---*v1 *b33 *n2
                                                  4

       1    2    2   2
    + ---*v3 *b33 *n2
       4

  = a product of the elements of: {4,

    1                  2    1    2    2   2        2    3        4    4
   ---*u1*v1*a22*b33*n2  - ---*u2 *a22 *n2  + u2*u3 *a22 *n2 - u3 *a22
    4                       4

       1    2       2           1                  2    1     2    2   2
    + ---*u3 *v2*a22 *b33*n2 + ---*u3*v3*a22*b33*n2  + ----*v1 *b33 *n2
       2                        4                       16

       1     2    2   2
    + ----*v3 *b33 *n2 }
       16

{HAM,FI} = 0



                   2    2    1
FI=u2*a22*n2 - 2*u3 *a22  + ---*v2*b33*n2
                             2

                                      1                2    2    1
  = a product of the elements of: {2,---*u2*a22*n2 - u3 *a22  + ---*v2*b33*n2}
                                      2                          4

{HAM,FI} = 0





And again in machine readable form:



HAM=u1**2*a22 + u2**2*a22 + u2*n2 - u3**2*a22 + u3*v3*b33 + ( - 1/4*v3**2*b33**2
)/a22$

FI= - 1/2*u1**2*u2*a22**3*n2 + u1**2*u3**2*a22**4 - 1/4*u1**2*v2*a22**2*b33*n2 -
 1/2*u2**3*a22**3*n2 + u2**2*u3**2*a22**4 - 1/4*u2**2*v2*a22**2*b33*n2 - 1/4*u2
**2*a22**2*n2**2 + 1/2*u2*u3**2*a22**3*n2 - 1/2*u2*u3*v3*a22**2*b33*n2 + 1/8*u2*
v3**2*a22*b33**2*n2 + u3**3*v3*a22**3*b33 - 1/4*u3**2*v2*a22**2*b33*n2 - 1/4*u3
**2*v3**2*a22**2*b33**2 - 1/4*u3*v2*v3*a22*b33**2*n2 - 1/16*v1**2*b33**2*n2**2 +
 1/16*v2*v3**2*b33**3*n2 - 1/16*v3**2*b33**2*n2**2$

FI= - 1/2*u1*u2*v1*a22*n2 + u1*u3**2*v1*a22**2 - 1/4*u1*v1*v2*b33*n2 - 1/2*u2**2
*v2*a22*n2 + u2*u3**2*v2*a22**2 - 1/2*u2*u3*v3*a22*n2 - 1/4*u2*v2**2*b33*n2 + u3
**3*v3*a22**2 - 1/4*u3*v2*v3*b33*n2$

FI=u1*v1*a22*b33*n2**2 - u2**2*a22**2*n2**2 + 4*u2*u3**2*a22**3*n2 - 4*u3**4*a22
**4 + 2*u3**2*v2*a22**2*b33*n2 + u3*v3*a22*b33*n2**2 + 1/4*v1**2*b33**2*n2**2 + 
1/4*v3**2*b33**2*n2**2$

FI=u2*a22*n2 - 2*u3**2*a22**2 + 1/2*v2*b33*n2$