Solution 3 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

          1      4    3          1      4    3
      - -----*a12 *b11 *r487 - -----*a13 *b11 *r487
         432                    432
r40=------------------------------------------------
                               6
                        a12*a13


       1      3
     -----*b11 *r487
      216
r41=-----------------
             3
          a13


          1      3    3          1          2    3
      - -----*a12 *b11 *r487 + -----*a12*a13 *b11 *r487
         432                    432
r42=----------------------------------------------------
                               6
                            a13


       1      4    3
     -----*a12 *b11 *r487
      216
r43=----------------------
                7
             a13


r45=0


r46=0


r47=0


r48=0


          31      6    3          19      4    2    3
r49=( - ------*a12 *b11 *r487 - ------*a12 *a13 *b11 *r487
         1296                    1296

          11      2    4    3          35      6    3               8
      - ------*a12 *a13 *b11 *r487 - ------*a13 *b11 *r487)/(a12*a13 )
         1728                         1728


       1      2    3         1      2    3
      ----*a12 *b11 *r487 + ----*a13 *b11 *r487
       54                    54
r410=-------------------------------------------
                           5
                        a13


r411

      17      4    3         17      2    2    3          5      4    3
   - -----*a12 *b11 *r487 + -----*a12 *a13 *b11 *r487 + -----*a13 *b11 *r487
      864                    864                         144
=----------------------------------------------------------------------------
                                          6
                                   a12*a13


r412=0


r413=0


           31      6    3          7       4    2    3
r414=( - ------*a12 *b11 *r487 - ------*a12 *a13 *b11 *r487
          2592                    2592

           1      2    4    3          31      6    3               8
       + -----*a12 *a13 *b11 *r487 - ------*a13 *b11 *r487)/(a12*a13 )
          384                         3456


r415=0


r416=0


r417=0


r418=0


       1      2    2          1      2    2
      ----*a12 *b11 *r487 + -----*a13 *b11 *r487
       27                    108
r419=--------------------------------------------
                              3
                       a12*a13


r420=0


          5      4    2         1      2    2    2         5      4    2
       - ----*a12 *b11 *r487 + ----*a12 *a13 *b11 *r487 + ----*a13 *b11 *r487
          72                    36                         72
r421=-------------------------------------------------------------------------
                                            5
                                     a12*a13


r422=0


r423=0


r424=0


r425=0


          1
       - ---*b11*r487
          6
r426=-----------------
            a13


          1      3
       - ----*a12 *b11*r487
          12
r427=-----------------------
                 4
              a13


r428=0


r429=0


          1      4             1     2    2             1     4
       - ----*a12 *b11*r487 - ---*a12 *a13 *b11*r487 - ---*a13 *b11*r487
          12                   3                        4
r430=--------------------------------------------------------------------
                                          4
                                   a12*a13


r431=0


r432=0


r433=0


r434=0


r435=0


r436=0


r437=0


          1      2    2
       - ----*a12 *b11 *r487
          36
r439=------------------------
                  4
               a13


        1      2    2          1      2    2
      -----*a12 *b11 *r487 + -----*a13 *b11 *r487
       108                    108
r440=---------------------------------------------
                              3
                       a12*a13


       1      2
      ----*b11 *r487
       36
r441=----------------
              2
           a13


r442=0


r443=0


r444=0


       1
      ---*b11*r487
       6
r445=--------------
          a13


       1     3
      ---*a12 *b11*r487
       6
r446=-------------------
               4
            a13


          1
       - ---*b11*r487
          6
r447=-----------------
            a13


r448=0


r449=0


r450=0


r451=0


r452=0


r453=0


r454=0


          1      3
       - ----*a12 *b11*r487
          12
r455=-----------------------
                 4
              a13


       1
      ---*b11*r487
       6
r456=--------------
          a13


r458=0


r459=0


          1      4             1     2    2             1     4
       - ----*a12 *b11*r487 - ---*a12 *a13 *b11*r487 - ---*a13 *b11*r487
          12                   3                        4
r460=--------------------------------------------------------------------
                                          4
                                   a12*a13


r461=0


r462=0


r463=0


r464=0


r465=0


r466=0


r467=0


r468=0


r469=0


       35      3    2         11          2    2
      -----*a12 *b11 *r487 + -----*a12*a13 *b11 *r487
       432                    432
r470=-------------------------------------------------
                              5
                           a13


          11      2    2         35      2    2
       - -----*a12 *b11 *r487 - -----*a13 *b11 *r487
          432                    432
r471=------------------------------------------------
                              4
                           a13


       1      2    2         5      2    2
      ----*a12 *b11 *r487 + ----*a13 *b11 *r487
       72                    72
r472=-------------------------------------------
                             3
                      a12*a13


       1      2    2         1      2    2
      ----*a12 *b11 *r487 - ----*a13 *b11 *r487
       72                    24
r473=-------------------------------------------
                           4
                        a13


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


       1     4             1     4
      ---*a12 *b11*r487 + ---*a13 *b11*r487
       6                   2
r483=---------------------------------------
                           4
                    a12*a13


       1
      ---*b11*r487
       6
r484=--------------
          a13


r485=0


       - a12*r487
r486=-------------
          a13


r488=0


r489=0


r490=0


r491=0


r492=0


          1
       - ---*b11*r487
          6
r493=-----------------
            a13


       1     3             1         2
      ---*a12 *b11*r487 - ---*a12*a13 *b11*r487
       6                   2
r494=-------------------------------------------
                           4
                        a13


r495=0


            2           2
       - a12 *r487 - a13 *r487
r496=--------------------------
                   2
                a13


r498=0


r499=0


        - a12*r487
r4100=-------------
           a13


             2
        - a12 *r487
r4101=--------------
              2
           a13


r4102=0


r4103=0


r4104=0


           1      3             1         2
        - ----*a12 *b11*r487 + ---*a12*a13 *b11*r487
           12                   3
r4105=-----------------------------------------------
                              4
                           a13


r4106=0


           1      3             1         2
        - ----*a12 *b11*r487 + ---*a12*a13 *b11*r487
           12                   3
r4107=-----------------------------------------------
                              4
                           a13


r4108=0


r4109=0


           1     2             1     2
        - ---*a12 *b11*r487 - ---*a13 *b11*r487
           2                   4
r4110=------------------------------------------
                              2
                       a12*a13


r4111=0


r4112=0


r4113=0


r4115=0


r4116=0


r4117=0


r4118=0


r4119=0


            3                 2
       6*a12 *r487 + 5*a12*a13 *r487
r4120=-------------------------------
                      3
                   a13


               2           2
        - 2*a12 *r487 - a13 *r487
r4121=----------------------------
                     2
                  a13


r4122=0


r4123=0


r4124=0


r4125=0


c33=0


c23=0


c22=0


         1      2
      - ----*b11
         36
c13=--------------
         a13


      1          2
     ----*a12*b11
      36
c12=---------------
            2
         a13


b33=0


b31=0


b21=0


b13=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r487, b11, a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{b11,a12,a13,r487}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

                    2              3            2        1                2
HAM=(2*u1*u2*a12*a13  + 2*u1*u3*a13  + u1*v1*a13 *b11 + ----*v1*v2*a12*b11
                                                         18

         1                2     2
      - ----*v1*v3*a13*b11 )/a13
         18

has apart from the Hamiltonian and Casimirs only the following first integral: 

     3             3    6          8      3          4    5        2    7
FI=u1 *v2*( - 2*a12 *a13  - a12*a13 ) + u1 *v3*(6*a12 *a13  + 5*a12 *a13 )

        2   2      1     2    6        1     8
    + u1 *v1 *( - ---*a12 *a13 *b11 - ---*a13 *b11)
                   2                   4

        2   2      1      4    4        1     2    6
    + u1 *v2 *( - ----*a12 *a13 *b11 + ---*a12 *a13 *b11)
                   12                   3

        2   2      1      4    4        1     2    6             2       3    6
    + u1 *v3 *( - ----*a12 *a13 *b11 + ---*a12 *a13 *b11) - u1*u2 *v2*a12 *a13
                   12                   3

           2       2    7                      3    6          8
    - u1*u2 *v3*a12 *a13  + u1*u2*u3*v3*( - a12 *a13  - a12*a13 )

                    1     4    4        1     2    6
    + u1*u2*v1*v2*(---*a12 *a13 *b11 - ---*a12 *a13 *b11)
                    6                   2

       1                     7            2           8        2       2    7
    - ---*u1*u2*v1*v3*a12*a13 *b11 + u1*u3 *v2*a12*a13  - u1*u3 *v3*a12 *a13
       6

       1                     7
    + ---*u1*u3*v1*v2*a12*a13 *b11
       6

                    1     4    4        1     8
    + u1*u3*v1*v3*(---*a12 *a13 *b11 + ---*a13 *b11)
                    6                   2

           3   1      3    4    2    1          6    2
    + u1*v2 *(----*a12 *a13 *b11  - ----*a12*a13 *b11 )
               72                    24

           2      1      2    5    2    5      7    2
    + u1*v2 *v3*(----*a12 *a13 *b11  + ----*a13 *b11 )
                  72                    72

              2      11      3    4    2    35          6    2
    + u1*v2*v3 *( - -----*a12 *a13 *b11  - -----*a12*a13 *b11 )
                     432                    432

           3   35      4    3    2    11      2    5    2
    + u1*v3 *(-----*a12 *a13 *b11  + -----*a12 *a13 *b11 )
               432                    432

        2   2      1      4    4        1     2    6        1     8
    + u2 *v1 *( - ----*a12 *a13 *b11 - ---*a12 *a13 *b11 - ---*a13 *b11)
                   12                   3                   4

       1    2              7        1     2   2    4    4
    + ---*u2 *v2*v3*a12*a13 *b11 - ----*u2 *v3 *a12 *a13 *b11
       6                            12

       1          2        7        1                 4    4
    - ---*u2*u3*v2 *a12*a13 *b11 + ---*u2*u3*v2*v3*a12 *a13 *b11
       6                            6

       1          2        7        1           2        6    2
    + ---*u2*u3*v3 *a12*a13 *b11 + ----*u2*v1*v2 *a12*a13 *b11
       6                            36

                     1      2    5    2     1      7    2
    + u2*v1*v2*v3*(-----*a12 *a13 *b11  + -----*a13 *b11 )
                    108                    108

       1           2    3    4    2
    - ----*u2*v1*v3 *a12 *a13 *b11
       36

        2   2      1      4    4        1     2    6        1     8
    + u3 *v1 *( - ----*a12 *a13 *b11 - ---*a12 *a13 *b11 - ---*a13 *b11)
                   12                   3                   4

       1     2   2    4    4        1    2              7
    - ----*u3 *v2 *a12 *a13 *b11 - ---*u3 *v2*v3*a12*a13 *b11
       12                           6

              2      5      4    3    2    1      2    5    2    5      7    2
    + u3*v1*v2 *( - ----*a12 *a13 *b11  + ----*a12 *a13 *b11  + ----*a13 *b11 )
                     72                    36                    72

              2   1      2    5    2     1      7    2      4
    + u3*v1*v3 *(----*a12 *a13 *b11  + -----*a13 *b11 ) + v1 *(
                  27                    108

           31      6    3     7       4    2    3     1      2    4    3
       - ------*a12 *b11  - ------*a12 *a13 *b11  + -----*a12 *a13 *b11
          2592               2592                    384

           31      6    3
       - ------*a13 *b11 )
          3456

        2   2      17      4    2    3    17      2    4    3     5      6    3
    + v1 *v2 *( - -----*a12 *a13 *b11  + -----*a12 *a13 *b11  + -----*a13 *b11 )
                   864                    864                    144

        2         1      3    3    3    1          5    3      2   2
    + v1 *v2*v3*(----*a12 *a13 *b11  + ----*a12*a13 *b11 ) + v1 *v3 *(
                  54                    54

           31      6    3     19      4    2    3     11      2    4    3
       - ------*a12 *b11  - ------*a12 *a13 *b11  - ------*a12 *a13 *b11
          1296               1296                    1728

           35      6    3      1     3       5        3
       - ------*a13 *b11 ) + -----*v2 *v3*a12 *a13*b11
          1728                216

        2   2       1      4    2    3     1      2    4    3
    + v2 *v3 *( - -----*a12 *a13 *b11  + -----*a12 *a13 *b11 )
                   432                    432

        1        3        5    3
    + -----*v2*v3 *a12*a13 *b11
       216

        4       1      4    2    3     1      6    3
    + v3 *( - -----*a12 *a13 *b11  - -----*a13 *b11 )
               432                    432

{HAM,FI} = too large to simplify





And again in machine readable form:



HAM=(2*u1*u2*a12*a13**2 + 2*u1*u3*a13**3 + u1*v1*a13**2*b11 + 1/18*v1*v2*a12*b11
**2 - 1/18*v1*v3*a13*b11**2)/a13**2$

FI=u1**3*v2*( - 2*a12**3*a13**6 - a12*a13**8) + u1**3*v3*(6*a12**4*a13**5 + 5*
a12**2*a13**7) + u1**2*v1**2*( - 1/2*a12**2*a13**6*b11 - 1/4*a13**8*b11) + u1**2
*v2**2*( - 1/12*a12**4*a13**4*b11 + 1/3*a12**2*a13**6*b11) + u1**2*v3**2*( - 1/
12*a12**4*a13**4*b11 + 1/3*a12**2*a13**6*b11) - u1*u2**2*v2*a12**3*a13**6 - u1*
u2**2*v3*a12**2*a13**7 + u1*u2*u3*v3*( - a12**3*a13**6 - a12*a13**8) + u1*u2*v1*
v2*(1/6*a12**4*a13**4*b11 - 1/2*a12**2*a13**6*b11) - 1/6*u1*u2*v1*v3*a12*a13**7*
b11 + u1*u3**2*v2*a12*a13**8 - u1*u3**2*v3*a12**2*a13**7 + 1/6*u1*u3*v1*v2*a12*
a13**7*b11 + u1*u3*v1*v3*(1/6*a12**4*a13**4*b11 + 1/2*a13**8*b11) + u1*v2**3*(1/
72*a12**3*a13**4*b11**2 - 1/24*a12*a13**6*b11**2) + u1*v2**2*v3*(1/72*a12**2*a13
**5*b11**2 + 5/72*a13**7*b11**2) + u1*v2*v3**2*( - 11/432*a12**3*a13**4*b11**2 -
 35/432*a12*a13**6*b11**2) + u1*v3**3*(35/432*a12**4*a13**3*b11**2 + 11/432*a12
**2*a13**5*b11**2) + u2**2*v1**2*( - 1/12*a12**4*a13**4*b11 - 1/3*a12**2*a13**6*
b11 - 1/4*a13**8*b11) + 1/6*u2**2*v2*v3*a12*a13**7*b11 - 1/12*u2**2*v3**2*a12**4
*a13**4*b11 - 1/6*u2*u3*v2**2*a12*a13**7*b11 + 1/6*u2*u3*v2*v3*a12**4*a13**4*b11
 + 1/6*u2*u3*v3**2*a12*a13**7*b11 + 1/36*u2*v1*v2**2*a12*a13**6*b11**2 + u2*v1*
v2*v3*(1/108*a12**2*a13**5*b11**2 + 1/108*a13**7*b11**2) - 1/36*u2*v1*v3**2*a12
**3*a13**4*b11**2 + u3**2*v1**2*( - 1/12*a12**4*a13**4*b11 - 1/3*a12**2*a13**6*
b11 - 1/4*a13**8*b11) - 1/12*u3**2*v2**2*a12**4*a13**4*b11 - 1/6*u3**2*v2*v3*a12
*a13**7*b11 + u3*v1*v2**2*( - 5/72*a12**4*a13**3*b11**2 + 1/36*a12**2*a13**5*b11
**2 + 5/72*a13**7*b11**2) + u3*v1*v3**2*(1/27*a12**2*a13**5*b11**2 + 1/108*a13**
7*b11**2) + v1**4*( - 31/2592*a12**6*b11**3 - 7/2592*a12**4*a13**2*b11**3 + 1/
384*a12**2*a13**4*b11**3 - 31/3456*a13**6*b11**3) + v1**2*v2**2*( - 17/864*a12**
4*a13**2*b11**3 + 17/864*a12**2*a13**4*b11**3 + 5/144*a13**6*b11**3) + v1**2*v2*
v3*(1/54*a12**3*a13**3*b11**3 + 1/54*a12*a13**5*b11**3) + v1**2*v3**2*( - 31/
1296*a12**6*b11**3 - 19/1296*a12**4*a13**2*b11**3 - 11/1728*a12**2*a13**4*b11**3
 - 35/1728*a13**6*b11**3) + 1/216*v2**3*v3*a12**5*a13*b11**3 + v2**2*v3**2*( - 1
/432*a12**4*a13**2*b11**3 + 1/432*a12**2*a13**4*b11**3) + 1/216*v2*v3**3*a12*a13
**5*b11**3 + v3**4*( - 1/432*a12**4*a13**2*b11**3 - 1/432*a13**6*b11**3)$