Solution 2 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a12  + a13


Expressions

The solution is given through the following expressions:

r40=0


r41=0


r42=0


r43=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r414=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


       7     2         7     2
      ---*a12 *r473 + ---*a13 *r473
       9               9
r421=-------------------------------
                 a12*a13


r422=0


r423=0


r424=0


r425=0


       1      2          1      2
      ----*a12 *r4106 + ----*a13 *r4106
       10                10
r426=-----------------------------------
                  2    2     2
               a12  + ---*a13
                       5


r428=0


r429=0


         3         1      2              2         2         1      3
      a12 *r427 + ----*a12 *a13*r4106 + ---*a12*a13 *r427 + ----*a13 *r4106
                   10                    5                   10
r430=-----------------------------------------------------------------------
                                  3    2         2
                               a12  + ---*a12*a13
                                       5


r431=r452


r432=0


r433=0


      1
r434=---*r464
      2


r435=0


r436=0


r437=0


r439=0


r440=0


          2     2         2     2
       - ---*a12 *r473 - ---*a13 *r473
          9               9
r441=----------------------------------
                       2
                    a13


r442=0


r443=0


r444=0


          1      2          1      2
       - ----*a12 *r4106 - ----*a13 *r4106
          10                10
r445=--------------------------------------
                   2    2     2
                a12  + ---*a13
                        5


r446= - 2*r427


       1      2          1      2
      ----*a12 *r4106 + ----*a13 *r4106
       10                10
r447=-----------------------------------
                  2    2     2
               a12  + ---*a13
                       5


r448=0


r449=0


r450=0


r451=0


r453=0


r454=0


r455=r427


          1      2          1      2
       - ----*a12 *r4106 - ----*a13 *r4106
          10                10
r456=--------------------------------------
                   2    2     2
                a12  + ---*a13
                        5


r458=0


r459=0


         3         1      2              2         2         1      3
      a12 *r427 + ----*a12 *a13*r4106 + ---*a12*a13 *r427 + ----*a13 *r4106
                   10                    5                   10
r460=-----------------------------------------------------------------------
                                  3    2         2
                               a12  + ---*a12*a13
                                       5


r461=r452


r462=0


r463=0


r465=0


r466=r452


r467=0


r468=0


      1
r469=---*r464
      2


          2     2         7     2
       - ---*a12 *r473 + ---*a13 *r473
          9               9
r470=----------------------------------
                  a12*a13


       2     2         7     2
      ---*a12 *r473 - ---*a13 *r473
       9               9
r471=-------------------------------
                     2
                  a12


          2     2         7     2
       - ---*a12 *r473 + ---*a13 *r473
          9               9
r472=----------------------------------
                  a12*a13


r474=0


r475=0


r476=0


r478=r473


r479=0


          1     2         1     2
       - ---*a12 *r492 + ---*a13 *r492
          2               2
r480=----------------------------------
                  a12*a13


r483

          3         3      2              4         2         3      3
   - 2*a12 *r427 - ----*a12 *a13*r4106 - ---*a12*a13 *r427 - ----*a13 *r4106
                    10                    5                   10
=----------------------------------------------------------------------------
                                3    2         2
                             a12  + ---*a12*a13
                                     5


          1      2          1      2
       - ----*a12 *r4106 - ----*a13 *r4106
          10                10
r484=--------------------------------------
                   2    2     2
                a12  + ---*a13
                        5


r485=0


       - a12*r487
r486=-------------
          a13


r488=r452


r489=r4103


          1     2         1     2
       - ---*a12 *r492 - ---*a13 *r492
          2               2
r490=----------------------------------
                       2
                    a13


       - a12*r492
r491=-------------
          a13


       1      2          1      2
      ----*a12 *r4106 + ----*a13 *r4106
       10                10
r493=-----------------------------------
                  2    2     2
               a12  + ---*a13
                       5


       3      3              2             3          2          4     3
      ----*a12 *r4106 - 2*a12 *a13*r427 + ----*a12*a13 *r4106 - ---*a13 *r427
       10                                  10                    5
r494=-------------------------------------------------------------------------
                                   2        2     3
                                a12 *a13 + ---*a13
                                            5


r495=0


            2           2
       - a12 *r487 - a13 *r487
r496=--------------------------
                   2
                a13


r498=0


      a12*r4103
r499=-----------
         a13


        - a12*r487
r4100=-------------
           a13


             2
        - a12 *r487
r4101=--------------
              2
           a13


r4102=r452


       a12*r4103
r4104=-----------
          a13


        1      5          1     3    2            2    3         2     5
       ----*a12 *r4106 - ---*a12 *a13 *r4106 + a12 *a13 *r427 + ---*a13 *r427
        10                5                                      5
r4105=------------------------------------------------------------------------
                                   2    3    2     5
                                a12 *a13  + ---*a13
                                             5


       a13*r492
r4108=----------
         a12


r4109=r492


r4110=0


        - a12*r4112 + a13*r452
r4111=-------------------------
                 a13


r4113=0


             2
        - a12 *r4112
r4115=---------------
              2
           a13


       a12*r4112 + a13*r452
r4116=----------------------
               a13


r4117=0


        - 2*a12*r464
r4118=---------------
            a13


             2           2
        - a12 *r464 + a13 *r464
r4119=--------------------------
                    2
                 a13


            3                 2
       6*a12 *r487 + 5*a12*a13 *r487
r4120=-------------------------------
                      3
                   a13


               2           2
        - 2*a12 *r487 - a13 *r487
r4121=----------------------------
                     2
                  a13


r4122=r452


r4123=r4103


       a12*r4103
r4124=-----------
          a13


       1
r4125=---*r464
       2


c33=0


c23=0


c22=0


c13=0


c12=0


b33=0


b31=0


b21=0


b13=0


b11=0


r481=r492


        3      3            2             2     3
       ----*a12 *r4106 + a12 *a13*r427 + ---*a13 *r427
        10                                5
r4107=-------------------------------------------------
                        2        2     3
                     a12 *a13 + ---*a13
                                 5


      a13*r473
r477=----------
        a12


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r473, r4106, r492, r427, r4112, r487, r452, r4103, r464, 
a12, a13

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{a13,a12}


Relevance for the application:

Modulo the following equation:

     2      2
0=a12  + a13


the system of equations related to the Hamiltonian HAM:

HAM=2*u1*u2*a12 + 2*u1*u3*a13

has apart from the Hamiltonian and Casimirs the following 9 first integrals: 

    1    4    2     2   2        2      2        2                  1    4    2
FI=---*u1 *a13  + u1 *u2 *( - a12  + a13 ) - 2*u1 *u2*u3*a12*a13 + ---*u2 *a13
    2                                                               2

        2   2    2    1    4    2
    + u2 *u3 *a13  + ---*u3 *a13
                      2

{HAM,FI} = too large to simplify



     3            3               3            2                  2
FI=u1 *u2*a12 + u1 *u3*a13 + u1*u2 *a12 + u1*u2 *u3*a13 + u1*u2*u3 *a12

           3
    + u1*u3 *a13

{HAM,FI} = too large to simplify



     3        2           2              2           2        3        2
FI=u1 *v1 + u1 *u2*v2 + u1 *u3*v3 + u1*u2 *v1 + u1*u3 *v1 + u2 *v2 + u2 *u3*v3

           2        3
    + u2*u3 *v2 + u3 *v3

{HAM,FI} = too large to simplify



     3             2          3      3          3            2
FI=u1 *v2*( - 2*a12 *a13 - a13 ) + u1 *v3*(6*a12  + 5*a12*a13 )

           2       2            2           2                      2          3
    - u1*u2 *v2*a12 *a13 - u1*u2 *v3*a12*a13  + u1*u2*u3*v3*( - a12 *a13 - a13 )

           2       3        2           2
    + u1*u3 *v2*a13  - u1*u3 *v3*a12*a13

{HAM,FI} = too large to simplify



     2                   2          2     2          2     2
FI=u1 *u2*v2*a12*a13 - u1 *u2*v3*a12  + u1 *u3*v2*a13  - u1 *u3*v3*a12*a13

{HAM,FI} = too large to simplify



     2   2     2   2                                     2   2     2   2
FI=u1 *v2  + u1 *v3  - 2*u1*u2*v1*v2 - 2*u1*u3*v1*v3 + u2 *v1  + u2 *v3

                        2   2     2   2
    - 2*u2*u3*v2*v3 + u3 *v1  + u3 *v2

{HAM,FI} = too large to simplify



     2              2     2          3           2        2
FI=u1 *v1*v2*a12*a13  + u1 *v1*v3*a13  + u1*u2*v2 *a12*a13

                     2               2      1     3    1         2
    - u1*u2*v2*v3*a12 *a13 + u1*u2*v3 *( - ---*a12  - ---*a12*a13 )
                                            2          2

                         2           2      1     2        1     3
    + u1*u3*v2*v3*a12*a13  + u1*u3*v3 *( - ---*a12 *a13 + ---*a13 )
                                            2              2

{HAM,FI} = too large to simplify



    3     2   2    4    2     2           3    3    2         5
FI=----*u1 *v2 *a12 *a13  + u1 *v2*v3*(a12 *a13  + ---*a12*a13 )
    10                                              5

        2   2   1      6    1     4    2
    + u1 *v3 *(----*a12  - ---*a12 *a13 )
                10          5

                    3      4    2    3      2    4
    + u1*u2*v1*v2*(----*a12 *a13  + ----*a12 *a13 )
                    10               10

                    1      3    3    1          5
    + u1*u2*v1*v3*(----*a12 *a13  + ----*a12*a13 )
                    10               10

                       1      3    3    1          5
    + u1*u3*v1*v2*( - ----*a12 *a13  - ----*a12*a13 )
                       10               10

                       3      2    4    3      6
    + u1*u3*v1*v3*( - ----*a12 *a13  - ----*a13 )
                       10               10

        2   2   1      2    4    1      6
    + u2 *v1 *(----*a12 *a13  + ----*a13 )
                10               10

        2            1      3    3    1          5
    + u2 *v2*v3*( - ----*a12 *a13  - ----*a12*a13 )
                     10               10

              2   1      3    3    1          5
    + u2*u3*v2 *(----*a12 *a13  + ----*a12*a13 )
                  10               10

              2      1      3    3    1          5
    + u2*u3*v3 *( - ----*a12 *a13  - ----*a12*a13 )
                     10               10

        2   2   1      2    4    1      6
    + u3 *v1 *(----*a12 *a13  + ----*a13 )
                10               10

        2         1      3    3    1          5
    + u3 *v2*v3*(----*a12 *a13  + ----*a12*a13 )
                  10               10

{HAM,FI} = too large to simplify



        2       2    2        2           3        3    2    2
FI=u1*v1 *v2*a12 *a13  + u1*v1 *v3*a12*a13  + u1*v2 *a12 *a13

           2         2     3        7         3
    + u1*v2 *v3*( - ---*a12 *a13 + ---*a12*a13 )
                     9              9

              2   2     2    2    7     4
    + u1*v2*v3 *(---*a12 *a13  - ---*a13 )
                  9               9

           3      2     3        7         3
    + u1*v3 *( - ---*a12 *a13 + ---*a12*a13 )
                  9              9

              2      2     4    2     2    2
    + u2*v1*v2 *( - ---*a12  - ---*a12 *a13 )
                     9          9

              2   7     3        7         3
    + u3*v1*v2 *(---*a12 *a13 + ---*a12*a13 )
                  9              9

{HAM,FI} = too large to simplify





And again in machine readable form:



HAM=2*u1*u2*a12 + 2*u1*u3*a13$

FI=1/2*u1**4*a13**2 + u1**2*u2**2*( - a12**2 + a13**2) - 2*u1**2*u2*u3*a12*a13 +
 1/2*u2**4*a13**2 + u2**2*u3**2*a13**2 + 1/2*u3**4*a13**2$

FI=u1**3*u2*a12 + u1**3*u3*a13 + u1*u2**3*a12 + u1*u2**2*u3*a13 + u1*u2*u3**2*
a12 + u1*u3**3*a13$

FI=u1**3*v1 + u1**2*u2*v2 + u1**2*u3*v3 + u1*u2**2*v1 + u1*u3**2*v1 + u2**3*v2 +
 u2**2*u3*v3 + u2*u3**2*v2 + u3**3*v3$

FI=u1**3*v2*( - 2*a12**2*a13 - a13**3) + u1**3*v3*(6*a12**3 + 5*a12*a13**2) - u1
*u2**2*v2*a12**2*a13 - u1*u2**2*v3*a12*a13**2 + u1*u2*u3*v3*( - a12**2*a13 - a13
**3) + u1*u3**2*v2*a13**3 - u1*u3**2*v3*a12*a13**2$

FI=u1**2*u2*v2*a12*a13 - u1**2*u2*v3*a12**2 + u1**2*u3*v2*a13**2 - u1**2*u3*v3*
a12*a13$

FI=u1**2*v2**2 + u1**2*v3**2 - 2*u1*u2*v1*v2 - 2*u1*u3*v1*v3 + u2**2*v1**2 + u2
**2*v3**2 - 2*u2*u3*v2*v3 + u3**2*v1**2 + u3**2*v2**2$

FI=u1**2*v1*v2*a12*a13**2 + u1**2*v1*v3*a13**3 + u1*u2*v2**2*a12*a13**2 - u1*u2*
v2*v3*a12**2*a13 + u1*u2*v3**2*( - 1/2*a12**3 - 1/2*a12*a13**2) + u1*u3*v2*v3*
a12*a13**2 + u1*u3*v3**2*( - 1/2*a12**2*a13 + 1/2*a13**3)$

FI=3/10*u1**2*v2**2*a12**4*a13**2 + u1**2*v2*v3*(a12**3*a13**3 + 2/5*a12*a13**5)
 + u1**2*v3**2*(1/10*a12**6 - 1/5*a12**4*a13**2) + u1*u2*v1*v2*(3/10*a12**4*a13
**2 + 3/10*a12**2*a13**4) + u1*u2*v1*v3*(1/10*a12**3*a13**3 + 1/10*a12*a13**5) +
 u1*u3*v1*v2*( - 1/10*a12**3*a13**3 - 1/10*a12*a13**5) + u1*u3*v1*v3*( - 3/10*
a12**2*a13**4 - 3/10*a13**6) + u2**2*v1**2*(1/10*a12**2*a13**4 + 1/10*a13**6) + 
u2**2*v2*v3*( - 1/10*a12**3*a13**3 - 1/10*a12*a13**5) + u2*u3*v2**2*(1/10*a12**3
*a13**3 + 1/10*a12*a13**5) + u2*u3*v3**2*( - 1/10*a12**3*a13**3 - 1/10*a12*a13**
5) + u3**2*v1**2*(1/10*a12**2*a13**4 + 1/10*a13**6) + u3**2*v2*v3*(1/10*a12**3*
a13**3 + 1/10*a12*a13**5)$

FI=u1*v1**2*v2*a12**2*a13**2 + u1*v1**2*v3*a12*a13**3 + u1*v2**3*a12**2*a13**2 +
 u1*v2**2*v3*( - 2/9*a12**3*a13 + 7/9*a12*a13**3) + u1*v2*v3**2*(2/9*a12**2*a13
**2 - 7/9*a13**4) + u1*v3**3*( - 2/9*a12**3*a13 + 7/9*a12*a13**3) + u2*v1*v2**2*
( - 2/9*a12**4 - 2/9*a12**2*a13**2) + u3*v1*v2**2*(7/9*a12**3*a13 + 7/9*a12*a13
**3)$