Solution 7 to problem over


Remaining equations | Expressions | Parameters | Inequalities | Relevance | Back to problem over

Equations

The following unsolved equations remain:
     2      2
0=a22  + a23


Expressions

The solution is given through the following expressions:

      - 2*a22*c12*r212
r21=-------------------
          a23*b33


           3                           2    2        2
r22=( - a22 *a23*b33*c12*c23*r212 - a22 *a23 *b12*c12 *r212

         1     2            2             1      2        4
      - ---*a22 *a23*b12*b33 *c23*r212 + ----*a22 *b12*b33 *r212
         4                                16

               3                       4        2
      + a22*a23 *b33*c12*c23*r212 + a23 *b12*c12 *r212

         1     3        2             1      2        4               3    2
      - ---*a23 *b12*b33 *c23*r212 + ----*a23 *b12*b33 *r212)/(a22*a23 *b33 *c23
         4                            16

         4
    + a23 *b12*b33*c12)


      1
     ---*b33*r212
      2
r23=--------------
         a23


r24=0


         1     2    2        2    2         3      2            4
r25=( - ---*a22 *a23 *b12*b33 *c23 *r212 + ----*a22 *a23*b12*b33 *c23*r212
         2                                  16

         1      2        6               4            2
      - ----*a22 *b12*b33 *r212 + a22*a23 *b33*c12*c23 *r212
         64

         1         3    2                     1         3    3
      - ---*a22*a23 *b12 *b33*c12*c23*r212 - ---*a22*a23 *b33 *c12*c23*r212
         4                                    4

         1          2    2    3               5        2
      + ----*a22*a23 *b12 *b33 *c12*r212 + a23 *b12*c12 *c23*r212
         16

         1     4        2    2         1     4        2    2
      - ---*a23 *b12*b33 *c12 *r212 - ---*a23 *b12*b33 *c23 *r212
         4                             4

         1     3        4             1      2        6
      + ---*a23 *b12*b33 *c23*r212 - ----*a23 *b12*b33 *r212)/(
         8                            64

          4    2    2    1         3    4          5
   a22*a23 *b33 *c23  - ---*a22*a23 *b33 *c23 + a23 *b12*b33*c12*c23
                         4

       1     4        3
    - ---*a23 *b12*b33 *c12)
       4


r26=0


r27=0


      - a22*r212
r28=-------------
         a23


r29=0


r210=0


r213=0


      a22*r212
r215=----------
        a23


r216= - r212


r217=0


r218=0


r219=0


r220=0


           3        2    1     2        2          3
c33=( - a22 *b33*c23  - ---*a22 *b12*b33 *c12 + a23 *b12*c12*c23
                         4

         1     2        2          2                      2
      - ---*a23 *b12*b33 *c12)/(a22 *a23*b33*c23 + a22*a23 *b12*c12)
         4


      1     2        2            1      2    2    3          3
c22=(---*a22 *a23*b12 *b33*c23 - ----*a22 *b12 *b33  + a22*a23 *b12*c12*c23
      4                           16

         1         2        2          4        2    1     3    2
      - ---*a22*a23 *b12*b33 *c12 - a23 *b33*c23  + ---*a23 *b12 *b33*c23
         4                                           4

         1     3    3        1      2    2    3          3
      + ---*a23 *b33 *c23 - ----*a23 *b12 *b33 )/(a22*a23 *b33*c23
         4                   16

         4
    + a23 *b12*c12)


      - a22*c12
c13=------------
        a23


      - a23*b33
b32=------------
        a22


      - a22*b12
b13=------------
        a23


b11= - b33


        2
     a23
a33=------
     a22


           2                    1     2        3      3
b31=( - a22 *a23*b12*b33*c23 + ---*a22 *b12*b33  - a23 *b12*b33*c23
                                4

         1     2        3          2              3
      + ---*a23 *b12*b33 )/(a22*a23 *b33*c23 + a23 *b12*c12)
         4


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 c12, r212, c23, b33, b12, a22, a23

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{r212,a22,a23}


Relevance for the application:

Modulo the following equation:

     2      2
0=a22  + a23


the system of equations related to the Hamiltonian HAM:

                  2    3    2              4
HAM=(u1*v1*( - a22 *a23 *b33 *c23 - a22*a23 *b12*b33*c12)

                  2    3                      4    2
      + u1*v2*(a22 *a23 *b12*b33*c23 + a22*a23 *b12 *c12)

                     3    2                  2    3    2
      + u1*v3*( - a22 *a23 *b12*b33*c23 - a22 *a23 *b12 *c12)

          2     3    3              2    4
      + u2 *(a22 *a23 *b33*c23 + a22 *a23 *b12*c12)

                    2    4                    5
      + u2*u3*(2*a22 *a23 *b33*c23 + 2*a22*a23 *b12*c12)

          2         5              6                         3    2
      + u3 *(a22*a23 *b33*c23 + a23 *b12*c12) + u3*v1*( - a22 *a23 *b12*b33*c23

            1     3            3          4                1         3        3
         + ---*a22 *a23*b12*b33  - a22*a23 *b12*b33*c23 + ---*a22*a23 *b12*b33 )
            4                                              4

                         4    2          5
      + u3*v2*( - a22*a23 *b33 *c23 - a23 *b12*b33*c12)

                  2    3    2              4
      + u3*v3*(a22 *a23 *b33 *c23 + a22*a23 *b12*b33*c12)

                    2    3                        4        2
      + v1*v2*(2*a22 *a23 *b33*c12*c23 + 2*a22*a23 *b12*c12 )

                       3    2                    2    3        2      2
      + v1*v3*( - 2*a22 *a23 *b33*c12*c23 - 2*a22 *a23 *b12*c12 ) + v2 *(

         1     3        2            1      3    2    3      2    3
        ---*a22 *a23*b12 *b33*c23 - ----*a22 *b12 *b33  + a22 *a23 *b12*c12*c23
         4                           16

            1     2    2        2              4        2
         - ---*a22 *a23 *b12*b33 *c12 - a22*a23 *b33*c23
            4

            1         3    2            1         3    3
         + ---*a22*a23 *b12 *b33*c23 + ---*a22*a23 *b33 *c23
            4                           4

            1          2    2    3
         - ----*a22*a23 *b12 *b33 )
            16

                    2    3        2            4                  2
      + v2*v3*(2*a22 *a23 *b33*c23  + 2*a22*a23 *b12*c12*c23) + v3 *(

              3    2        2    1     2    2        2          5
         - a22 *a23 *b33*c23  - ---*a22 *a23 *b12*b33 *c12 + a23 *b12*c12*c23
                                 4

            1     4        2           2    3                  4
         - ---*a23 *b12*b33 *c12))/(a22 *a23 *b33*c23 + a22*a23 *b12*c12)
            4

has apart from the Hamiltonian and Casimirs only the following first integral: 

                    3    2          4
FI=u1*v2*( - a22*a23 *b33 *c23 - a23 *b12*b33*c12)

                2    2    2              3
    + u1*v3*(a22 *a23 *b33 *c23 + a22*a23 *b12*b33*c12)

                    3    2          4
    + u2*v1*(a22*a23 *b33 *c23 + a23 *b12*b33*c12)

                   2    2    2              3                  2
    + u3*v1*( - a22 *a23 *b33 *c23 - a22*a23 *b12*b33*c12) + v1 *(

          1     2            2        1      2        4          3
       - ---*a22 *a23*b12*b33 *c23 + ----*a22 *b12*b33  + a22*a23 *b33*c12*c23
          2                           16

          1         2    2              4        2    1     3        2
       - ---*a22*a23 *b12 *b33*c12 + a23 *b12*c12  - ---*a23 *b12*b33 *c23
          4                                           4

          1      2        4
       + ----*a23 *b12*b33 )
          16

              1         2    3        1     3        2          2
    + v1*v3*(---*a22*a23 *b33 *c23 + ---*a23 *b12*b33 *c12) + v2 *(
              2                       2

            3                      2    2        2    1     2            2
       - a22 *a23*b33*c12*c23 - a22 *a23 *b12*c12  - ---*a22 *a23*b12*b33 *c23
                                                      4

          1      2        4          3                  4        2
       + ----*a22 *b12*b33  + a22*a23 *b33*c12*c23 + a23 *b12*c12
          16

          1     3        2        1      2        4
       - ---*a23 *b12*b33 *c23 + ----*a23 *b12*b33 )
          4                       16

                     2    2                        3        2
    + v2*v3*( - 2*a22 *a23 *b33*c12*c23 - 2*a22*a23 *b12*c12 )

             3              5                        6    2    2
{HAM,FI} = v2 *( - 4*a22*a23 *b12*b33*c12*c23 - 2*a23 *b12 *c12

                        6    2    2      2              5    2    2
                 + 2*a23 *b33 *c23 ) + v2 *v3*(6*a22*a23 *b12 *c12

                          5    2    2         6                         2
               - 6*a22*a23 *b33 *c23  - 12*a23 *b12*b33*c12*c23) + v2*v3

                       5                        6    2    2        6    2    2
           *(12*a22*a23 *b12*b33*c12*c23 + 6*a23 *b12 *c12  - 6*a23 *b33 *c23 ) 

               3              5    2    2            5    2    2
           + v3 *( - 2*a22*a23 *b12 *c12  + 2*a22*a23 *b33 *c23

                      6
               + 4*a23 *b12*b33*c12*c23)





And again in machine readable form:



HAM=(u1*v1*( - a22**2*a23**3*b33**2*c23 - a22*a23**4*b12*b33*c12) + u1*v2*(a22**
2*a23**3*b12*b33*c23 + a22*a23**4*b12**2*c12) + u1*v3*( - a22**3*a23**2*b12*b33*
c23 - a22**2*a23**3*b12**2*c12) + u2**2*(a22**3*a23**3*b33*c23 + a22**2*a23**4*
b12*c12) + u2*u3*(2*a22**2*a23**4*b33*c23 + 2*a22*a23**5*b12*c12) + u3**2*(a22*
a23**5*b33*c23 + a23**6*b12*c12) + u3*v1*( - a22**3*a23**2*b12*b33*c23 + 1/4*a22
**3*a23*b12*b33**3 - a22*a23**4*b12*b33*c23 + 1/4*a22*a23**3*b12*b33**3) + u3*v2
*( - a22*a23**4*b33**2*c23 - a23**5*b12*b33*c12) + u3*v3*(a22**2*a23**3*b33**2*
c23 + a22*a23**4*b12*b33*c12) + v1*v2*(2*a22**2*a23**3*b33*c12*c23 + 2*a22*a23**
4*b12*c12**2) + v1*v3*( - 2*a22**3*a23**2*b33*c12*c23 - 2*a22**2*a23**3*b12*c12
**2) + v2**2*(1/4*a22**3*a23*b12**2*b33*c23 - 1/16*a22**3*b12**2*b33**3 + a22**2
*a23**3*b12*c12*c23 - 1/4*a22**2*a23**2*b12*b33**2*c12 - a22*a23**4*b33*c23**2 +
 1/4*a22*a23**3*b12**2*b33*c23 + 1/4*a22*a23**3*b33**3*c23 - 1/16*a22*a23**2*b12
**2*b33**3) + v2*v3*(2*a22**2*a23**3*b33*c23**2 + 2*a22*a23**4*b12*c12*c23) + v3
**2*( - a22**3*a23**2*b33*c23**2 - 1/4*a22**2*a23**2*b12*b33**2*c12 + a23**5*b12
*c12*c23 - 1/4*a23**4*b12*b33**2*c12))/(a22**2*a23**3*b33*c23 + a22*a23**4*b12*
c12)$

FI=u1*v2*( - a22*a23**3*b33**2*c23 - a23**4*b12*b33*c12) + u1*v3*(a22**2*a23**2*
b33**2*c23 + a22*a23**3*b12*b33*c12) + u2*v1*(a22*a23**3*b33**2*c23 + a23**4*b12
*b33*c12) + u3*v1*( - a22**2*a23**2*b33**2*c23 - a22*a23**3*b12*b33*c12) + v1**2
*( - 1/2*a22**2*a23*b12*b33**2*c23 + 1/16*a22**2*b12*b33**4 + a22*a23**3*b33*c12
*c23 - 1/4*a22*a23**2*b12**2*b33*c12 + a23**4*b12*c12**2 - 1/4*a23**3*b12*b33**2
*c23 + 1/16*a23**2*b12*b33**4) + v1*v3*(1/2*a22*a23**2*b33**3*c23 + 1/2*a23**3*
b12*b33**2*c12) + v2**2*( - a22**3*a23*b33*c12*c23 - a22**2*a23**2*b12*c12**2 - 
1/4*a22**2*a23*b12*b33**2*c23 + 1/16*a22**2*b12*b33**4 + a22*a23**3*b33*c12*c23 
+ a23**4*b12*c12**2 - 1/4*a23**3*b12*b33**2*c23 + 1/16*a23**2*b12*b33**4) + v2*
v3*( - 2*a22**2*a23**2*b33*c12*c23 - 2*a22*a23**3*b12*c12**2)$