Solution 5 to problem over


Expressions | Parameters | Inequalities | Relevance | Back to problem over

Expressions

The solution is given through the following expressions:

r10=0


r11=0


r12=0


r13=0


r14=0


r20=0


r21=0


r22=0


r23=0


r24=0


r26=0


r27=0


r28=0


              3           3           3
      - 18*a22 *r15 + 4*n1 *r4119 - n1 *r464
r29=-----------------------------------------
                         2
                    6*a22 *n1


r210=0


r212=0


r213=0


              3           3           3
       - 6*a22 *r15 + 4*n1 *r4119 - n1 *r464
r214=----------------------------------------
                         2
                    6*a22 *n1


r215=0


r216=0


r217=0


r218=0


r219=0


r30=0


r31=0


r32=0


r33=0


r34=0


r35=0


r36=0


r37=0


r38=0


r39=0


r310=0


r311=0


r312=0


r313=0


r314=0


r315=0


r316=0


r317=0


r318=0


r319=0


r320=0


r321=0


r322=0


r323=0


r324=0


r325=0


r326=0


r327=0


r328=0


r329=0


r330=0


r331=0


r332=0


r333=0


r334=0


r335=0


r336=0


r337=0


r338=0


r339=0


r340=0


       - n1*r4102
r341=-------------
          a22


r342=0


r343=0


      3*n1*r4119 - n1*r464
r344=----------------------
              a22


r345=0


       - n1*r4102
r346=-------------
          a22


r347=0


r348=0


      n1*r4119 - n1*r464
r349=--------------------
            3*a22


r350=0


r351=0


       - n1*r4102
r352=-------------
          a22


r353=0


r354=0


       - n1*r4119
r355=-------------
          a22


r40=0


r41=0


r42=0


r43=0


r44=0


r45=0


r46=0


r47=0


r48=0


r49=0


r410=0


r411=0


r412=0


r413=0


r415=0


r416=0


r417=0


r418=0


r419=0


r420=0


r421=0


r422=0


r423=0


r424=0


r425=0


r426=0


       - r446
r427=---------
         2


r428=0


r429=0


       - r446
r430=---------
         2


r431=3*r4102


r432=0


r433=0


       - 6*r4119 + 3*r464
r434=---------------------
               2


r435=0


r436=0


r437=0


r438=0


r439=0


r440=0


r441=0


r442=0


r444=0


r445=0


r447=0


r448=0


r449=0


r450=0


r451=0


r452=3*r4102


r453=0


r454=0


       - r446
r455=---------
         2


r456=0


r458=0


r459=0


       - r446
r460=---------
         2


r461=r4102


r462=0


r463=0


r465=0


r466=r4102


r467=0


r468=0


      2*r4119 + r464
r469=----------------
            6


r470=0


r471=0


r472=0


r473=0


r474=0


r475=0


r476=0


r477=0


r478=0


r479=0


r480=0


r481=0


r482=0


r483=r446


r484=0


r485=0


r486=0


r487=0


r488=3*r4102


r489=0


r490=0


r491=0


r492=0


r493=0


r494=r446


r495=0


r496=0


r497=0


r498=0


r499=0


r4100=0


r4101=0


r4103=0


r4104=0


        - r446
r4105=---------
          2


r4106=0


        - r446
r4107=---------
          2


r4108=0


r4109=0


r4111=0


r4112=0


r4113=0


r4114=3*r4119


r4115=0


r4117=0


r4118=0


r4120=0


r4121=0


r4122=0


r4123=0


r4124=0


m3=0


m2=0


m1=0


n3=0


n2=0


c33=0


c23=0


c22=0


c13=0


c12=0


c11=0


b33=0


b32=0


b31=0


b23=0


b22=0


b21=0


b13=0


b12=0


b11=0


a33= - a22


a23=0


a13=0


a12=0


a11=2*a22


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 r15, r4119, r4102, r446, r464, n1, a22

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{n1,a22}


Relevance for the application:

The new Hamiltonian in form of a list of vanishing expressions: 

{a11 - 2*a22,
a12,
a13,
a23,
a22 + a33,
b11,
b12,
b13,
b21,
b22,
b23,
b31,
b32,
b33,
c11,
c12,
c13,
c22,
c23,
c33,
n2,
n3,
m1,
m2,
m3}$

The system of equations related to the Hamiltonian HAM:

        2                 2         2
HAM=2*u1 *a22 + u1*n1 + u2 *a22 - u3 *a22

has apart from the Hamiltonian and Casimirs the following 5 first integrals: 

             2                 2            4    2       2   2    2     2   2
FI= - 2*u1*u2 *a22*n1 - 6*u1*u3 *a22*n1 + u2 *a22  + 6*u2 *u3 *a22  - u2 *n1

          4    2     2   2
    + 9*u3 *a22  - u3 *n1

which the program can not factorize further.

{HAM,FI} = 0



        2   2     2   2                                     2   2     2   2
FI= - u1 *v2  - u1 *v3  + 2*u1*u2*v1*v2 + 2*u1*u3*v1*v3 - u2 *v1  - u2 *v3

                        2   2     2   2
    + 2*u2*u3*v2*v3 - u3 *v1  - u3 *v2

which the program can not factorize further.

{HAM,FI} = 0



        2              2                               2
FI= - u1 *v1*n1 + u1*u2 *v1*a22 - u1*u2*v2*n1 + 3*u1*u3 *v1*a22 - u1*u3*v3*n1

        3            2                    2              3
    + u2 *v2*a22 + u2 *u3*v3*a22 + 3*u2*u3 *v2*a22 + 3*u3 *v3*a22

  = a product of the elements of: {u1*v1 + u2*v2 + u3*v3,

                2           2
    - u1*n1 + u2 *a22 + 3*u3 *a22}

{HAM,FI} = 0



          3              2   2    2       2   2    2        2
FI= - 3*u1 *a22*n1 + 3*u1 *u2 *a22  + 9*u1 *u3 *a22  + u1*u2 *a22*n1

             2            4    2       2   2       4    2       2   2
    + 9*u1*u3 *a22*n1 + u2 *a22  + 2*u2 *n1  - 9*u3 *a22  + 2*u3 *n1

  = a product of the elements of: {3,

                                                         2
        3            2   2    2       2   2    2    u1*u2 *a22*n1
    - u1 *a22*n1 + u1 *u2 *a22  + 3*u1 *u3 *a22  + ---------------
                                                          3

                           4    2         2   2                      2   2
             2           u2 *a22      2*u2 *n1         4    2    2*u3 *n1
    + 3*u1*u3 *a22*n1 + ---------- + ----------- - 3*u3 *a22  + -----------}
                            3             3                          3

{HAM,FI} = 0



             2           2
FI=u1*n1 - u2 *a22 - 3*u3 *a22

which the program can not factorize further.

{HAM,FI} = 0





And again in machine readable form:



HAM=2*u1**2*a22 + u1*n1 + u2**2*a22 - u3**2*a22$

FI= - 2*u1*u2**2*a22*n1 - 6*u1*u3**2*a22*n1 + u2**4*a22**2 + 6*u2**2*u3**2*a22**
2 - u2**2*n1**2 + 9*u3**4*a22**2 - u3**2*n1**2$

FI= - u1**2*v2**2 - u1**2*v3**2 + 2*u1*u2*v1*v2 + 2*u1*u3*v1*v3 - u2**2*v1**2 - 
u2**2*v3**2 + 2*u2*u3*v2*v3 - u3**2*v1**2 - u3**2*v2**2$

FI= - u1**2*v1*n1 + u1*u2**2*v1*a22 - u1*u2*v2*n1 + 3*u1*u3**2*v1*a22 - u1*u3*v3
*n1 + u2**3*v2*a22 + u2**2*u3*v3*a22 + 3*u2*u3**2*v2*a22 + 3*u3**3*v3*a22$

FI= - 3*u1**3*a22*n1 + 3*u1**2*u2**2*a22**2 + 9*u1**2*u3**2*a22**2 + u1*u2**2*
a22*n1 + 9*u1*u3**2*a22*n1 + u2**4*a22**2 + 2*u2**2*n1**2 - 9*u3**4*a22**2 + 2*
u3**2*n1**2$

FI=u1*n1 - u2**2*a22 - 3*u3**2*a22$