Publications on mathematical models and applications, in chronological order
Note: To download the paper, click on arXiv and then on Download PDF on the right hand side. When there is no link to arXiv, direct .pdf download link is given.
[1] | John Clements, Babak Farzad, and Henryk Fukś. Dynamics of large-scale networks following a merger. In Tansel Özyer and Reda Alhajj, editors, Machine Learning Techniques for Online Social Networks, Lecture Notes in Social Networks, pages 173--193. Springer, Cham, 2018. [ bib | DOI | http ] |
[2] | K. Brudzynski, D. Miotto, L. Kim, C. Sjaarda, L. Maldonado-Alvarez, and H. Fukś. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Scientific Reports, 7:1--15, 2017. [ bib | DOI | .pdf ] |
[3] | J. Clements, B. Farzad, and H. Fukś. Dynamics of large scale networks following a merger. In Ravi Kumar, James Caverlee, and Hanghang Tong, editors, Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pages 471--476, 2016. [ bib | DOI | http ] |
[4] | H. Fukś, A. T. Lawniczak, and R. Duchesne. Effects of population mixing on the spread of SIR epidemics. Eur. Phys. J. B, 50:209--214, 2006. [ bib | DOI | arXiv ] |
[5] | A. T. Lawniczak, H. Fukś, and B. Di Stefano. Individually based SIR models, their motivation, and their spatio-temporal dynamics. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13B(suppl.):437--455, 2006. [ bib | http ] |
[6] | H. Fukś, R. Duchesne, and A. Lawniczak. Spatial correlations in SIR epidemic models. In Proceeding of 7th WSEAS International Conference on Applied Mathematics, Canun, Mexico, May 11-14 2005, pages 108--113, 2005. [ bib | arXiv ] |
[7] | A. Gerisch, A.T. Lawniczak, R. A. Budiman, H. Fukś, and H. E. Ruda. Surface roughening in homoepitaxial growth: a lattice gas cellular automaton model. In M. A. Sloot, B. Chopard, and A. G. Hoekstra, editors, Cellular Automata, pages 286--295, Heidelberg, 2004. Springer. [ bib | DOI | arXiv ] |
[8] | A. Gerisch, A. T. Lawniczak, R. A. Budiman, H. E. Ruda, and H. Fukś. Lattice gas cellular automaton modeling of surface roughening in homoepitaxial growth in nanowires. In Proceedings of Canadian Conference on Electrical and Computer Engineering, Montreal, May 2003, pages 1413--1416, 2003. [ bib | DOI | .pdf ] |
[9] | H. Fukś, A. T. Lawniczak, and S. Volkov. Packet delay in models of data networks. ACM Transactions on Modelling and Simulations, 11:233--250, 2001. [ bib | DOI | arXiv ] |
[10] | H. Fukś and A. T. Lawniczak. Individual-based lattice model for the spatial spread of epidemics. Discrete Dynamics Dynamics in Nature and Society, 6:191--200, 2001. [ bib | DOI | arXiv ] |
[11] | N. Boccara and H. Fukś. Critical behavior of a cellular automaton highway traffic model. J. Phys. A: Math. Gen., 33:3407--3415, 2000. [ bib | DOI | arXiv ] |
[12] | B. Di Stefano, H. Fukś, and A. T. Lawniczak. Object-oriented implementation of CA/LGCA modelling applied to the spread of epidemics. In Proceedings of Canadian Conference on Electrical and Computer Engineering, Halifax, May 2000, pages 26--31, 2000. [ bib | DOI ] |
[13] | B. Di Stefano, H. Fukś, and A. T. Lawniczak. Application of fuzzy logic in CA/LGA models as a way of dealing with imprecise and vague data. In Proceedings of Canadian Conference on Electrical and Computer Engineering, Halifax, May 2000, pages 212--217, 2000. [ bib | DOI ] |
[14] | H. Fukś, A. T. Lawniczak, and B. Di Stefano. Epilab: software implementation of epidemic models based on lattice gas cellular automaton. Report FI-NP2000-003, The Fields Institute for Research in Mathematical Sciences, Toronto, 2000. [ bib ] |
[15] | H. Fukś and A. T. Lawniczak. Performance of data networks with random links. Mathematics and Computers in Simulation, 51:103--119, 1999. [ bib | DOI | arXiv ] |
[16] | H. Fukś. Exact results for deterministic cellular automata traffic models. Phys. Rev. E, 60:197--202, 1999. [ bib | DOI | arXiv ] |
[17] | H. Fukś and N. Boccara. Generalized deterministic traffic rules. Int. J. Mod. Phys. C, 9:1--12, 1998. [ bib | DOI | arXiv ] |
[18] | N. Boccara and H. Fukś. Modeling diffusion of innovations with probabilistic cellular automata. In M. Delorme and J. Mazoyer, editors, Cellular Automata: A Parallel Model, pages 263--277, Dordrecht, 1998. Kluwer Academic Publishers. [ bib | DOI | arXiv ] |
[19] | H. Fukś and N. Boccara. Cellular automata models for diffusion of innovations. Unpublished, 1997. [ bib | arXiv ] |
[20] | N. Boccara, H. Fukś, and Q. Zeng. Car accidents and number of stopped cars due to road blockage on a one-lane highway. J. Phys. A: Math. Gen., 30:3329--3332, 1997. [ bib | DOI | arXiv ] |
This file was generated by bibtex2html 1.99.