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Definition and Examples of Seki
Seki (Japanese) = mutual life

, Sensei’s Library:

In its simple form, it is a sort of symbiosis where two live groups
share liberties which neither of them can fill without dying.
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Aim of Talk

Motivation: To extend earlier work on the mathematics of
semeai to more than 2 chains, start with analysing seki for
more than 2 chains.

Questions: What is the essence of a seki position?
Do seki fall naturally into different groups, i.e. how should seki
be classified?

Irrelevant: minor changes that leave the structure unchanged:
I colour switch
I shift, rotation and reflection
I deformations
I non-terminal positions
I introduction of cuts
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Non-terminal Positions

We are only interested in terminal positions.
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Shift and Deformation
All of these positions are equivalent.
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Introducing Cross Cuts I

Also all of these seki are essentially identical despite two
having a cross cut.
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Introducing Cross Cuts II

The following positions differ even more but are still equivalent.
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Common Fate Graphs

What is the essence of a seki position?
Commonly used in Go: the Common Fate Graph (CFG):
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Figure: The corresponding CFG

Circles: red: white chain, blue: black chain, black: liberty
Lines: neighbourhood relations

But this graph still contains irrelevant information.
The same types of seki on previous slide have different CFG.
⇒We need a more compact graph.
But the choice of graph depends on the type of seki to be
considered.
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The Class of Basic Seki

Let us consider what will be called ’Basic Seki’:

All chains are essential and have 2 liberties
(+ possibly additional chains of 1 or 2 stones with only 1 liberty
in an opponent eye).

Positions are terminal, i.e. a move taking an opponent liberty
gets instantly captured.
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Basic Seki Graphs
This special class of seki allows more compact graphs:
Basic Seki Graphs (BSG). Example:
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Figure: The 2 corresponding graphs: CFG and BSG



Properties of Basic Seki Graphs I

Necessary properties for graphs to represent basic seki:

I Edges are coloured (white/black chain⇒ red/blue edge)
I Each node (i.e. liberty) has at least one and at most four

edges (i.e. neighbouring chains).
I There has to be at least one red and one blue edge

(otherwise life, not seki).
I If two edges of same colour, say red, end in a shared node,

say M, then both red edges must have their other end in
the same other node, say N (otherwise White can move on
M and give atari without being captured).
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Figure: Two forbidden and two admissible graphs
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Properties of Basic Seki Graphs I

I If two nodes are linked to each other by edges of different
colour then these two nodes are all the nodes of the graph
(consequence of previous statement, rightmost figure).

I If a node has edges of only one colour then these edges
may reach only two other nodes (otherwise a move on M
creates a chain with 3 liberties).
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Figure: A forbidden and an admissible graph
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Summary on Basic Seki

Main conclusions:
I Edges originating from one node can reach at most two

other nodes!

I Therefore Basic Seki consist either of a linear or a circular
sequence of liberties where two neighbouring liberties are
connected by only chains of one colour.

I The case of only 2 liberties connected by black and white
chains can be seen as the smallest circular sequence.
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A Numerical Encoding

Basic Seki are linear or circular (i.e. 1-dimensional)

⇒ possibility to encode any Basic Seki through a (linear)
sequence of symbols, e.g. numbers.

It turns out that conditions on Basic Seki Graphs shown before
are not only necessary but also sufficient.

⇒ Generating all sequences of such number encodings will
generate all Basic Seki.
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The Translation Rules

The following rules allow a literal translation of Basic Seki
Graphs into a sequence of numbers:
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Figure: Abbreviations of graph elements by digits

I linear seki (2 nodes have each only 1 neighbouring node)
⇒ start with a 0

I circular seki: (each node has 2 neighbouring nodes)
⇒ do not start with a 0 (i.e. no 0 at all)

I abbreviation: for example 121212 = (12)3

I two seki attached on board to one seki ⇒ ... + ...
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Examples of linear Seki I
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Examples of linear Seki II
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Examples of linear Seki III
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”The Scream” with encoding: 0121



Examples of linear Seki IV
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”The Onion” with encoding: 0111111111 = 01(11)4

looks circular but is linear.



Examples of circular Seki I
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Examples of circular Seki II
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Examples of circular Seki III
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encoding: 1111 = (11)2



Generating all Basic Seki

To generate all topological types of Basic Seki:

I start with a 0 to encode a seki with linear topology,
I having apart from the optional initial 0 an arbitrary

sequence of digits 1,1,2,2,3,3 except
I have at least one underlined and one not underlined digit,
I the sum of any two neighbouring digits ≤ 4

and for circular seki first + last digit ≤ 4
I avoid identical linear basic seki (inversion, colour switch,

e.g. 0211 = 0112 = 0211 = 0112)
I avoid identical circular basic seki (inversion, colour switch,

cyclic permutation, e.g. 211 = 112 = 121 = ...)
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e.g. 0211 = 0112 = 0211 = 0112)
I avoid identical circular basic seki (inversion, colour switch,

cyclic permutation, e.g. 211 = 112 = 121 = ...)
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Attaching Seki
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A full board seki of G. Hungerink

Figure: The upper left
corner and the colour
switched lower right corner
of the board as BSG with
encoding 1211.

The BSG of the whole board consists of three disconnected
sub graphs and has the encoding
1211 + 0(22)41(22)611211(22)611211(22)61(22)4 + 1121.



Cutting off a Stone I
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Cutting off a Stone II
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Creating an Eye I
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Figure: The change of CFG



Creating an Eye II
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Bamboo Joints in Basic Seki I
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Bamboo Joints in Basic Seki II
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Both seki have the encoding 22 but different sequences of
black and white stones around liberties (WBWB and WWBB).
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New Graphs needed I

So far: chains in Go → edges in graphs,
liberties in Go→ nodes in graphs

(each chain had 2 liberties and each edge has 2 ends (nodes))

Now:
Chains have > 2 liberties→ can not be visualized by edges.
Also, liberties can have only 2 neighbouring chains so from now
on: liberties → edges, chains → nodes

Also, set of nodes (chains) is
partitioned into white and black
ones, each edge (liberty) links a
black and white node
⇒ graph is so-called bi-partite
⇒ not included:

������
������
������
�� ��
�� ��
������
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New Graphs needed II

Further, on a Go board stones do not lie on top of each other

⇒ graph needs to be planar (i.e. it must be possible to draw
graph on paper without crossing edges)

⇒We are looking for bi-partite planar graphs!

Before starting with simple graphs with only one edge between
two nodes we give some theorems on regular graphs.
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Before starting with simple graphs with only one edge between
two nodes we give some theorems on regular graphs.
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Planarity of Graphs

�
�

�
��
�

Figure: Forbidden sub-minors and sub-divisions of planar graphs

A graph is planar iff it does not contain a K5 and no K33 sub
division (sub minor).



Relationship to Terminal Seki

Theorem:
Each bi-partite 3-regular (planar) graph where each chain has
at least two opponent neighbouring chains represents a
terminal seki.

Proof:
W.l.o.g. let us assume that White takes a joint liberty of chains

� and �. If now Black takes a liberty of � from one of the
other neighbours of � then as a result, � has only one liberty
and all neighbours of � have at least 2 liberties, i.e. White has
no chance to safe � .
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Seki with a fixed Number of Liberties per Chain

Theorem:
In a position where each chain has the same number d of
liberties the difference of the number of black and white eyes is
equal d times the difference of numbers of black and white
chains.

Proof:
Let there be Nw white and Nb black chains, Yw white and Yb
black (1-point) eyes, S shared liberties and let Tw ,Tb be the
total number of white and black liberties. Then Ti = d · Ni and
Ti = Yi + S. We therefore get d · Nw − Yw = S = d · Nb − Yb
and thus

Yb − Yw = d · (Nb − Nw ). (1)

Corollary:
A position where each chain has the same number of liberties
(> 1) can not have exactly one single eye.
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Theorem:
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Let there be Nw white and Nb black chains, Yw white and Yb
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(> 1) can not have exactly one single eye.



Cuts with Flows I
Theorem:
Given a position where each liberty is either in a 1-point eye or
is shared by exactly one white and one black chain and each
chain has the same number of d liberties. Then any cut through
the coresponding graph has a total flow determined through the
number of chains and eyes on either side of the cut.

Proof:

Figure: A cut of a 3-regular graph



Cuts with Flows I
Theorem:
Given a position where each liberty is either in a 1-point eye or
is shared by exactly one white and one black chain and each
chain has the same number of d liberties. Then any cut through
the coresponding graph has a total flow determined through the
number of chains and eyes on either side of the cut.

Proof:

Figure: A cut of a 3-regular graph



Cuts with Flows II

Proof continued:

Figure: A cut of a 3-regular graph

On right side:
SR

B ... number of liberties of Black in cutted edges
Y R

B ... number of eyes of Black
NR

B ... number of black chains
(similarly W for White and L for the left side)



Cuts with Flows III
Proof continued:

Replacing in the previous theorem the number of eyes Y J
I by

liberties in cutted edges plus number of eyes: SJ
I + Y J

I then we
get for the total flow F through the cut defined by
F := SL

B − SL
W = SR

W − SR
B :

F = (NL
B − NL

W )d − (Y L
B − Y L

W ) = (1− 1)3− (1− 0) = −1
= (NR

W − NR
B )d − (Y R

W − Y R
B ) = (1− 2)3− (0− 2) = −1

(≡ discrete version of Gauß’s Theorem)
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Seki with at most one shared Liberty between any two
Chains

We start with simple graphs having only one edge between two
nodes (i.e. seki where 2 chains share at most one liberty).



Bi-partite planar 3-regular Graphs

Sensei’s Library [4]:
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Figure: The
corresponding
Graph

Figure: The
same Graph
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Planar Graphs and their Dual
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Figure: A planar
Graph

Figure: with it’s dual
Graph



Planar Graphs and their Dual
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Figure: A planar
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The Cube and the Octahedron

Figure: This dual Graph of a Cube

Figure: is an Octahedron



The Cube and the Octahedron

Figure: This dual Graph of a Cube Figure: is an Octahedron



More simple bi-partite planar 3-regular Graphs I

Figure: This replacement of any edge generates a new graph and
thus a new seki. The right graph represents a seki (with 2 eyes) on its
own.



More simple bi-partite planar 3-regular Graphs II
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The position resulting from the complication step.



More simple bi-partite planar 3-regular Graphs III

Figure: This replacement of any node also generates a new graph
and thus a new seki. The right graph represents a seki (with 3 eyes)
on its own.



Higher regular Graphs I
How about sekis corresponding to simple 4-regular bi-partite
graphs where chains have each 4 liberties and any two chains
share at most one liberty?

Theorem (Kathie Cameron):
There are no simple bi-partite planar graphs that are 4- or
higher regular.

Proof:
Let G = (V ,E) be a connected planar graph with vertices V ,
edges E and set of regions R.
Euler’s formula says: |V | − |E |+ |R| = 2
Assuming G is simple and bipartite, each region is bounded by
at least 4 edges.

4|R| ≤
∑
r∈R

(# of edges bounding region r) = 2|E |

⇒ 2|R| ≤ |E |



Higher regular Graphs I
How about sekis corresponding to simple 4-regular bi-partite
graphs where chains have each 4 liberties and any two chains
share at most one liberty?

Theorem (Kathie Cameron):
There are no simple bi-partite planar graphs that are 4- or
higher regular.

Proof:
Let G = (V ,E) be a connected planar graph with vertices V ,
edges E and set of regions R.
Euler’s formula says: |V | − |E |+ |R| = 2
Assuming G is simple and bipartite, each region is bounded by
at least 4 edges.

4|R| ≤
∑
r∈R

(# of edges bounding region r) = 2|E |

⇒ 2|R| ≤ |E |



Higher regular Graphs I
How about sekis corresponding to simple 4-regular bi-partite
graphs where chains have each 4 liberties and any two chains
share at most one liberty?

Theorem (Kathie Cameron):
There are no simple bi-partite planar graphs that are 4- or
higher regular.

Proof:
Let G = (V ,E) be a connected planar graph with vertices V ,
edges E and set of regions R.

Euler’s formula says: |V | − |E |+ |R| = 2
Assuming G is simple and bipartite, each region is bounded by
at least 4 edges.

4|R| ≤
∑
r∈R

(# of edges bounding region r) = 2|E |

⇒ 2|R| ≤ |E |



Higher regular Graphs I
How about sekis corresponding to simple 4-regular bi-partite
graphs where chains have each 4 liberties and any two chains
share at most one liberty?

Theorem (Kathie Cameron):
There are no simple bi-partite planar graphs that are 4- or
higher regular.

Proof:
Let G = (V ,E) be a connected planar graph with vertices V ,
edges E and set of regions R.
Euler’s formula says: |V | − |E |+ |R| = 2

Assuming G is simple and bipartite, each region is bounded by
at least 4 edges.

4|R| ≤
∑
r∈R

(# of edges bounding region r) = 2|E |

⇒ 2|R| ≤ |E |



Higher regular Graphs I
How about sekis corresponding to simple 4-regular bi-partite
graphs where chains have each 4 liberties and any two chains
share at most one liberty?

Theorem (Kathie Cameron):
There are no simple bi-partite planar graphs that are 4- or
higher regular.

Proof:
Let G = (V ,E) be a connected planar graph with vertices V ,
edges E and set of regions R.
Euler’s formula says: |V | − |E |+ |R| = 2
Assuming G is simple and bipartite, each region is bounded by
at least 4 edges.

4|R| ≤
∑
r∈R

(# of edges bounding region r) = 2|E |

⇒ 2|R| ≤ |E |



Higher regular Graphs II

If G is at least 4-regular.

4|V | ≤
∑
v∈V

degree(v ) = 2|E |

2|V | ≤ |E |

By Euler’s formula:

2 · 2 = 2|V | − 2|E |+ 2|R| (2)
≤ |E | − 2|E |+ |E | (3)
= 0 (4)

⇒ contradiction.
In other words, there are no seki with chains having each the
same number of 4 or more liberties, having no eyes and only 1
shared liberty between any 2 chains.
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Higher regular but non-simple Graphs

What if we drop the requirement of one shared liberty between
2 chains, i.e. what if graphs have multi-edges, i.e. are not
simple?

Bi-partite planar 3-regular graphs have a perfect matching.

⇒ opportunity to generate higher regular graphs with
multi-edges. (i.e. seki with pairs of chains sharing more than
one liberty).
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Again a bi-partite planar 3-regular Graph

��������������
����� ��������
��������������
����� ��������
������� ������
���������� � �
���� ���������
��������� ����
� � ����������
������ �������
�������� �����
��������������
�������� �����
��������������

Figure: A cubical graph



A bi-partite planar 4-regular Graph
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Figure: A cubical graph



A bi-partite planar 5-regular Graph
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Figure: A cubical graph



A bi-partite planar 6-regular Graph
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Figure: A cubical graph

Any matchings of the cubical graph involving 3 joint liberties
between opponent chains give non-terminal seki.



A bi-partite planar 6-regular Graph
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Figure: A cubical graph

Any matchings of the cubical graph involving 3 joint liberties
between opponent chains give non-terminal seki.



More non-simple bi-partite planar 3-regular Graphs

���

Figure: Take any 3-regular bi-partite graph like the two in this figure,
cut any edge and use that to replace any edge in any other 3-regular
bipartite graph to generate a new 3-regular bi-partite graph, i.e. a
terminal seki. (If the lose ends are eyes then only the middle seki is
terminal.)



Example: Benzol Variations

Figure: Terminal seki with a honey comb inside



Inserts in 3-regular Graphs

Figure: A multi-edge replacement for
an edge in a 3-regular graph is a
terminal seki on its own.
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� ������
���� ���
����� �

����� ��
� � ����

Diagram 1. A realiza-
tion on a Go board with
an eye on each side



3-regular Seki Creations

Figure: Such graphs of arbitrary length represent terminal seki.



4-regular Inserts

Figure: A terminal seki with two eyes,
also when ends are connected

Figure: Any such creation is a terminal seki



A 5-regular Graph

Figure: This is not a seki. Chains on the right and left can be
captured.
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Work of Vladimir Gurvich et. al. I

In preprint [8] (2012) and earlier preprints they consider
positions

I without eyes
I where each liberty has exactly one white and one black

neighbouring chain.

A position with m white chains and n black chains is encoded
as an m× n matrix A with only non-negative entries Aij that give
the number of liberties between the white chain i and the black
chain j .

Moves are made by decreasing an Aij by 1.

Problem: For a given computer determined seki
matrix a Go position may not exist, e.g. not for:

 1 1 1
1 1 1
1 1 1

 .
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Work of Vladimir Gurvich et. al. II

Example:

� ��� ���
� �������
� � ����
������ ��
���� � ��
������ ��
� � �����
� � � �
�� �����

i\j � � � sB
i

� 0 3 3 6
� 3 3 1 7
� 3 1 2 6
sW

j 6 7 6

Table: The liberty matrix

Lemma: (giving sufficient conditions for Black to capture)
Even when playing second, Black captures if there is a column
j such that sB

i − Aij ≥ sW
j for every row i and sB

i > sW
j if Aij = 0.
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‘Local Seki’ versus ‘global Seki’

Figure: Global instability of Cubical Seki

⇒ Each attacking chain is captured (i.e. is a local seki) but in
return an opponent chain can be captured (i.e. no global seki).
⇒ Sacrifice a small chain and catch a big one⇒ no “real” seki.
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A Sacrifice in a Local Seki
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The End

Thank you!
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