N=1, # of fermion fields: 1, # of boson fields: 0
weight(t)=5, weight(s)=10, fermion weights={6+7}, boson weights={}
Problem | Unknowns |
Inequalities | Equations |
Computing time |
Back to overview
Problem
Find equations
f(1) := p2*f(2)
t 2x
f(2) := p1*f(1)
t 3x
with symmetries
f(1) := Df(2) *f(1)*q7 + Df(1) *f(2)*q8 + Df(2)*f(1) *q9 + Df(1)*f(2) *q10
s x x x x
+ f(1) *q11
5x
f(2) := Df(2) *f(2)*q2 + Df(1) *f(1)*q1 + Df(1) *f(1) *q3 + Df(2)*f(2) *q4
s x 2x x x x
+ Df(1)*f(1) *q5 + f(2) *q6
2x 5x
Unknowns
All solutions for the following 13 unknowns have to be determined:
p1,p2,q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11
Inequalities
Each of the following lists represents one inequality which states
that not all unknowns in this list may vanish. These inequalities
filter out solutions which are trivial for the application.
{q10,q9,q8,q7,q5,q4,q3,q2,q1}
{q6,q5,q4,q3,q2,q1}
{q11,q10,q9,q8,q7}
{p1}
{p2}
Equations
All comma separated 16 expressions involving 43 terms have to vanish.
q4 - q9,
q2 - q8,
q11 - q6,
q10 - q4 + 3*q8,
q2 - q7 - 3*q9,
q1 + 2*q3 + q5,
q2 + 2*q4 - q7,
q10 - 2*q2 - q4,
p1*q10 - p2*q5,
p1*q7 - p2*q1,
3*(p1*q10 + 1/3*p1*q8 - 1/3*p2*q3),
3*(p1*q10 + p1*q8 - 1/3*p2*q1),
3*(p1*q7 + p1*q9 - 1/3*p2*q5),
3*(p1*q7 + 1/3*p1*q9 - 1/3*p2*q3),
p1*q8 - p2*q3 - 2*p2*q5,
p1*q9 - 2*p2*q1 - p2*q3
Computing time
On a Pentium 4 PC with 1.7GHz running REDUCE 3.7 with 120 MB RAM
under Linux it took 1 sec.