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Abstract. We show that the local structure approximation of suffi-
ciently high order can predict the existence of second order phase transi-
tions belonging to the directed percolation university class in a-asynchronous
cellular automata.

Probabilistic cellular automata (PCA) rules known as a-asynchronous rules are
obtained by a random perturbation of the deterministic updating rule: instead
of updating all cells simultaneously, we update each cell independently with
probability «, the synchrony rate, and leave its state unchanged with probability
1—-a.

The systematic exploration of the properties of a-asynchronous Elementary
Cellular Automata by numerical simulations [2] identified rules which exhibited
a qualitative change of behaviour for a continuous variation of the synchrony
rate: there exists a critical value of a,. which separates an active phase in which
the system fluctuates around an equilibrium and an absorbing phase where the
system is rapidly attracted towards a fixed point where all cells are in the same
state.

Using the techniques from statistical physics, this abrupt change of behaviour
was then identified as a second order phase transitions which belong to the
directed percolation (DP) universality class [1]. This identification was conducted
by taking as an order parameter the density, that is the average number of cells
in state 1, and, up to symmetries, nine rules were found to exhibit such DP
behaviour. Their Wolfram numbers are 6, 18, 26, 38, 50, 58, 106, 134, and 146.

The aim of this paper is to study to which extent this second order phase
transition can be predicted with analytical techniques. We are in particular in-
terested in answering two questions: (a) Can we explain the existence of the two
active and absorbing phases? (b) Can we propose an approximation of the value
of the critical synchrony rate a. that separates the two phases?

Our approach is based on so-called local structure theory, proposed in 1987 by
H. A. Gutowitz et al. [5] as a generalization of the mean-field theory for cellular
automata. The basic idea of this theory is to consider probabilities of blocks



(words) of length k and to construct a map on these block probabilities, which,
when iterated, approximates probabilities of occurrence of the same blocks in
the actual orbit of a given cellular automaton. In the case of nearest-neighbour
binary rule, the aforementioned map is 2¥-dimensional, where k is called the level
of local structure approximation. However, using the method proposed in [3], it
can be reduced to equivalent, but somewhat simpler 2°~! dimensional map.

We will assume that the dynamics takes place on a one-dimensional lattice.
Let s;(t) € {0,1} denotes the state of the lattice site ¢ at time ¢, where i € Z,
t € N. We will say that the site i is occupied (empty) at time ¢ if s;(¢) = 1 (resp.,
si(t) = 0). A Deterministic elementary cellular automaton is a dynamical system
governed by the local function f : {0,1}3 — {0, 1} such that

si(t+1) = f(si—1(t), si(t), si1(1)),

for all ¢ € Z and for all t € N. Function f is to be called a rule of CA.

In a probabilistic cellular automaton, lattice sites simultaneously change
states from 0 to 1 or from 1 to 0 with probabilities depending on states of
local neighbours. A common method for defining PCA is to specify a set of lo-
cal transition probabilities. For example, in order to define a nearest-neighbour
PCA one has to specify the probability w(s;(t + 1))|s;—1(¢), si(t), si+1(t)) that
the site s;(t) with nearest neighbors s;_1(t), s;+1(¢) changes its state to s;(t+1)
in a single time step.

We will now define a-asynchronous elementary cellular automata. Let o €
[0,1] and let f be alocal function of some deterministic CA with Wolfram number
W (f). Corresponding a-asynchronous elementary cellular automaton with rule
number W(f) is a probabilistic CA for which transition probabilities are

w(l|zyzexs) = af (x1, z2,23) + (1 — @)xs. (1)

Let us denote by P;(b) the probability of occurrences of blocks b = b1by ... b,
after ¢ iterations of the PCA rule, where b € {0,1}*. These probabilities, to be
called block probabilities, form an infinite hierarchy that we can arrange by
defining ng) as a column vector that holds all the k-block probabilities sorted
in lexical order.

Let us now suppose that a PCA is given, and we know its transition proba-
bilities w. Local structure map associated with that PCA is then given by
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We refer the reader to [3] for details of its construction. It should be understood
that the above is a system of 2* equations, so that we have a separate equation
for each (a; ...ax) € {0,1}*. In vector form we will write
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where A%) | defined by eq. (2), will be called local structure map of level k.

Not all components of the block probability vector ng) are independent.
This is due to so-called consistency conditions, that is, equations of the type
Pi(ay...ap—10)+Pi(ay...ap—11) = Pi(ay ...ax). By exploiting these conditions,
2%_dimensional local structure map of level k can be reduced to equivalent, but
somewhat simpler, 28=! dimensional map [3].

Detailed analysis of reduced local structure maps for « asynchronous PCA
belonging to DP universality class reveals that these maps exhibit transcriti-
cal bifurcations as a changes. The bifurcation does not necessarily happens for
all k, but rather appears when k is sufficiently high. For rules 6, 18, 38, 50,
106, and 134, we were able to compute fixed points of local structure maps of
level 3 directly, by solving equations P®) = A®) (P(3)) with he help of com-
puter algebra software (the maps were transformed to reduced form first). We
were also able to determine the stability of these fixed points. Details of these
calculations can be found in [4]. Here we only present graphs of typical bifur-
cation diagrams obtained that way, as shown in Figure 1. Vertical axis in these
diagrams corresponds to P(1), which can be obtained from P®) by using con-
sistency conditions, as P(1) = P(100) + P(101) + P(110) 4+ P(111). In all three
diagrams, the absorbing fixed point P(1) = 0 is present, shown as the horizontal
line. The active fixed point is represented by the smooth curve, partially solid
(stable) and partially dashed (unstable). Exchange of stability takes place at the
bifurcation point (circled).
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Fig. 1. Bifurcation diagram for local structure equations of level three for rules 6, 18,
and 38.

For the three remaining rules, 26, 58, and 146, the local structure map A®)
does not exhibit a transcritical bifurcation, so it is necessary to consider higher
order maps, of level four (for rules 26 and 146) and five (for rule 58). Absorbing
fixed points of these maps have the same structure as previously described, with
P(1) = 0. Unfortunately, equations for their active fixed points cannot be solved
even with the help of symbolic algebra software, due to the size of relevant



equations. It is, however, possible to find the stable branch of the bifurcation
diagram by iterating these maps many times, so they converge sufficiently close
to the stable fixed point. We performed such iterations for all three cases, and
the results are shown in Figure 2. Even though the unstable branch of the active
fixed point is missing, it is evident that the active phase appears abruptly as «
increases, which provides a strong evidence for transcritical bifurcation.
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Fig. 2. Partial bifurcation diagrams for local structure equations of level 4 rules 26 and
146, and level 5 for rule 58. Diagrams were obtained numerically with 10° iterations.

In summary, we can say that the local structure approximation of order 3
to 5 can predict existence of the phase transition for all DP rules. The local
structure map for each of these rules exhibits a transcritical bifurcations, and
the direction of the bifurcation agrees with the direction of the phase transition
observed experimentally, that is, if the active phase appears (disappears) as «
increases, then the non-zero fixed point of the local structure map becomes stable
(unstable) as a increases. The point at which the transcritical bifurcation occurs
is, however, rather far from the critical point observed experimentally.

Can this be improved by increasing the order of the local structure approxi-
mation? The answer is indeed yes, although we cannot expect to be able to find
explicit symbolic expressions for fixed points of eq. (2) when k is large. One can,
however, iterate A%) many times, starting from some generic initial condition,
and when this is done, the orbit of A*) indeed converges to a stable fixed point,
which, depending on the value of «, can be zero or non-zero.

We performed iterations of A*) maps for k = 2...9 for all DP rules, and
plotted P(1) as a function of « after ¢+ = 10* iterations. Results are shown in
Figure 3, together with curves obtained “experimentally” by iterating a given
rule for 10° steps, using randomly generated initial configurations with 4-10* sites
and periodic boundary conditions. One can clearly see that local structure maps
not only predict existence of phase transitions, but also seem to approximate
behaviour of P:(1) vs. « curves with increasing accuracy as the order of the
approximation increases.
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Fig. 3. Experimental results together with local structure approximations up to level 9.

Based on the evidence presented in this paper, we suspect that the same may
be true for other probabilistic CA rules belonging to DP universality class. It
is already known to be true for the probabilistic mixture of rules 182 and 200
studied by Mendonga and de Oliveira [6]. We plan to investigate this conjecture
for other PCA rules.

References

1. Fates, N.: Asynchronism induces second order phase transitions in elemen-
tary cellular automata. Journal of Cellular Automata 4(1), 21-38 (2009),
http://hal.inria.fr/inria-00138051

2. Fates, N., Morvan, M.: An experimental study of robustness to asynchronism for
elementary cellular automata. Complex Systems 16, 1-27 (2005)

3. Fuks, H.: Construction of local structure maps for cellular automata. J. of Cellular
Automata 7, 455-488 (2013)

4. Fuks, H., Fates, N.: Local structure approximation as a predictor of
second order phase transitions in asynchronous cellular automata (2013),
arxiv.org/abs/1312.5244

5. Gutowitz, H.A., Victor, J.D., Knight, B.W.: Local structure theory for cellular au-
tomata. Physica D 28, 18-48 (1987)

6. Mendonga, J.R.G., de Oliveira, M.J.: An extinction-survival-type phase transition
in the probabilistic cellular automaton p 182— q 200. J. of Phys. A: Math. and Theor.
44(15), art. no. 155001 (2011)



