
Performance of the majority voting rule in solving

the density classification problem in high dimensions
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Abstract. Density Classification Problem (DCP) is one of the most widely studied

problems in the theory of cellular automata. After it has been shown that the DCP

cannot be solved perfectly, the research in this area has been focused on finding better

rules that could solve the DCP approximately. In this paper we argue that the majority

voting rule in high dimensions can achieve high performance in solving the DCP,

and that its performance increases with dimension. We support this conjecture with

arguments based on the mean-field approximation and direct computer simulations.
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1. Introduction

Classification of initial configurations is a type of computational problem which has been

extensively studied in the context of cellular automata (CA) theory. For problems of

this type, the initial configuration is the data and the CA evolution rule is the algorithm

that processes the data and yields the solution in the form of the final configuration.

One of the simplest classification tasks is the so-called Density Classification Problem

(DCP). The CA performing this task should converge to a fixed point of all 1’s if the

initial configuration contains more 1’s than 0’s, and to a fixed point of all 0’s if the

initial configuration contains more 0’s than 1’s.

From the time when Gacs, Kurdyumov and Levin proposed this problem and its first

approximate solution [11], a lot of research effort went into studying of this topic. After

it has been proved by Land and Belew [13] that the perfect two-state rule performing

this task does not exist, approximate solutions have been constructed using a variety of

methods, including “complexity engineering” [7], genetic algorithms [15, 6, 5, 12, 16],

genetic programming [2, 9], using basins of attraction [3], analytical formulation [14],

and other methods. Additionally, in 1997 Fukś [10] proposed a generalized version of the

problem involving two rules and found its exact solution, and later on Capcarrère and

Sipper [4] established the necessary conditions to obtain a solution to DCP involving

two rules. Modified versions of the problem allowing different output specification and

different boundary conditions had been considered as well [17]. Most recently, it has been

demonstrated that stochastic version of DCP can be solved with arbitrary precision [8].

In this paper we consider a totalistic majority rule in high dimensions. We

conjecture that this rule can solve DCP with increasing accuracy as the dimension

increases. We illustrate this claim with numerical experiments in dimensions ranging

from 1 to 4, and with some arguments based on the mean-field approximation.

2. Definitions

A Binary Cellular Automaton (BCA) is a dynamical system which evolves in discrete

time steps. Let ZL = {0, 1, . . . , L − 1}. We will consider d-dimensional configuration

space (space of global states) defined as AZd
L , where A = {0, 1} is a set of allowed

cell states, and where we impose periodic boundary conditions, such that all indices

of elements of AZd
L are taken modulo L. Elements of the configuration space are thus

hypercubes of binary symbols, and in the special case of d = 1, the configuration space

is simply a set of binary strings of length L.

Let N be a finite subset of Zd
L, to be called a neighbourhood. For a given x ∈ Zd

L,

the set x +N will be called a neighbourhood of x. Let ψ : AN → A be called a local

function. Cellular automaton (rule) is a transformation Ψ : AZd
L → AZd

L defined as

Ψ(x)n = ψ(xn+N ), (1)

for every n ∈ Zd
L and x ∈ AZd

L . Ψ is sometimes called a global function. For a given

initial configuration x ∈ AZd
L , the set {Ψt(x)}∞t=0 of consecutive iterates of Ψ will be
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called an orbit of x.

In one dimension (d = 1), one often considers the neighbourhood of radius r,

defined as N = {−r,−r + 1, . . . , r}. The global rule Ψ is then defined by a local

mapping ψ : {0, 1}2r+1 → {0, 1}, where r is referred to as the radius of the rule. The

global function is then defined as

Ψ(x)i = ψ(xi−r, xi−r+1, . . . , xi+r), (2)

for all x ∈ ZL and i ∈ {0, 1, . . . , L − 1}. The above neighbourhood definition can be

easily generalized to higher dimensions. We define Moore neighbourhood Mr,d of radius

r in dimension d as

Mr,d = {−r,−r + 1, . . . , r}d. (3)

The number of cells in this neighbourhood is (2r + 1)d.

The density classification problem (DCP) can now be stated as follows: given the

initial configuration x ∈ AZd
L containing majority of zeros or ones, find the CA rule

Ψ such that after sufficiently many iterations of this rule the orbit of x reaches a

homogeneous state where every cell is, respectively, in the state 0 or in the state 1.

Performance of a given rule Ψ in performing the density classification is typically

defined as follows. Let I denotes the number of random initial configurations consisting

of N cells, drawn from a symmetric Bernoulli distribution. This means that each

initial configuration is generated by setting each of its cells independently to 0 or 1,

with the same probability 1/2. Suppose that we iterate the rule Ψ on each of those

initial configurations for a maximum of Tmax time steps. If a configuration with initial

density less than 0.5 converges to the fixed point of all zeros, we consider it a successful

classification, similarly as when a configuration with initial density greater than 0.5

converges to the fixed point of all ones. In all other cases we consider the classification

unsuccessful. The percentage of successful classifications among all I initial conditions

will be denoted by pIN(Ψ), and called performance of the rule.

3. Rule 232

One of the most obvious candidates for a potential solver of DCP is the so-called majority

rule. This rule returns 1 if and only if the majority of the cells in the neighborhood

have the value 1. In one dimension and r = 1, rule 232 is the majority rule using the

Wolfram numbering convention. Its local function is defined by 000 → 0, 001 → 0,

010→ 0, 011→ 1, 100→ 0, 101→ 1, 110→ 1, and 111→ 1.

Let us consider the mean-field approximation of this rule, which assumes that at

time t the expected value of all cells is the same and equal to ct, and that there is no

correlation between sites. Under these assumptions, one can show that ct+1 = f(ct),

where f(x) = 3(1 − x)x2 + x3. The function f has 3 fixed points: 0, 0.5, and 1, as

illustrated in Figure 1. Two of them (0 and 1) are attracting fixed points while 0.5 is a

repelling fixed point. For that reason, if the initial density c0 is smaller than 1/2, then

limt→∞ ct = 0, and if c0 > 0.5, limt→∞ ct = 1.
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Figure 1. Spatiotemporal diagrams representing orbits of the the majority rule 232 in

1D with initial densities 0.4 and 0.6 (bottom) and cobweb plots illustrating iterations

of the mean field map for this rule (top).

If the mean-field approximation was correct, the majority rule would solve the

DCP problem in 1D. Thus, in a sense, the mean-field behavior is the desired behavior

for the potential DCP solver. In one dimension, the mean field approximation is not very

accurate, mainly because of the strong interdependence of individual cells. It is generally

known, however, that in higher dimensions the accuracy of the mean-field approximation

improves, thus one would expect that the performance of the majority rule as a solver

of DCP should be better in higher dimensions than in 1D. Before we consider this,

however, we need to discuss some properties of one-dimensional generalization of rule

232.

4. Majority rule in one dimension

In the one-dimensional space, the majority rule with radius r is defined as

Ψ(x)i = majority(xi−r, xi−r+1, . . . , xi+r). (4)

Suppose that we apply this rule iteratively to a binary string of length N with periodic

boundary conditions. It has been demonstrated [1] that one of the two things will

eventually happen: a fixed point or a cycle of period 2 will be reached. By a fixed point

we obviously understand a string which is invariant under the action of the majority

rule. As it turns out, dynamics of this rule is dominated by its fixed points, because

one can show that the fraction of possible strings of length N that lead to cycles is less

than N−1/2, thus becoming negligible for large N [1]. This means that orbits of almost

all initial strings eventually evolve toward fixed points.
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The number of these fixed points has been calculated by Z. Agur [1]. For N odd

and the radius r ≤ (N − 1)/2, the number of fixed points p(N, r) is given by

p(n, r) = 2 + 2

b n
2(r+1)c∑
l=1

N

N − 2lr

(
N − 2lr

2l

)
. (5)

The structure of these points is not difficult to describe. Following [1], consider a binary

string a = a0a1 . . . aN−1. Let us define a run as a maximal substring of consecutive bits

of equal value. Let k be the number of runs in a, and their sizes be t1, t2, . . . tk (since a

is periodic, we can choose origin of coordinate system to coincide with the beginning of

some run). In reference [1] it has been demonstrated that a string a is a fixed point of

the majority rule if and only if, for even k, ti ≥ r + 1 for all i, or, for odd k, ti ≥ r + 1

for i = 2, . . . , k − 1 and t1 + tk ≥ r + 1. For example, if r = 1, any string which

has no isolated zeros and no isolated ones is a fixed point. Figure 1 (bottom) shows

spatiotemporal diagrams of orbits which reach fixed points of this type.

We will make an important observation regarding p(N, r). Namely, p(N, r)

decreases with increasing r, eventually reaching the value 2. This happens when

r = (N − 1)/2, that is, when the neighbourhood of any site includes all other sites.

Looking at the above description of the structure of fixed points we immediately realize

that for r = (N − 1)/2, the condition which ti must satisfy becomes

ti ≥ r + 1 =
N + 1

2
, (6)

and this is possible only if there is exactly one run – otherwise the total length of runs

all runs would exceed N . This means that the fixed points in this case are all zeros and

all ones. Moreover, any configuration reaches one of these fixed points in one iteration,

and strings with density less than 1/2 are mapped to all zeros, while those with density

greater than 1/2 are mapped to all ones. For odd N and r = (N − 1)/2, therefore, the

majority rule is a perfect classifier of densities.

This suggests that perhaps the DCP performance of the majority rule increases

with the radius (for fixed N). While we are not able to construct a rigorous proof of

this statement, we will offer some experimental evidence. Figure 2 shows the plot of

the performance of the majority rule as a function of its radius. We can clearly see that

the performance increases with r and reaches 100% when the ratio (2r+ 1)/N becomes

1. In this case, since we took N = 10001, this happens when r = 5000.

One can also ask what happens in the converse case, that is, when the radius r

is fixed and the size N of the lattice changes. Figure 2 demonstrates results of such

experiment. It shows how the performance varies with N when the radius is held

constant at r = 1000. Decrease of performance can clearly be observed.

5. Mean-field approximation of the majority rule

Let us again consider the local function of the majority voting rule with n inputs,

f(x1, x2, . . . , xn) = majority{x1, x2, . . . , xn}, (7)
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Figure 2. Plot of performance p1000010001 of the the 1-d majority rule as a function of

radius r.
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Figure 3. Plot of performance p10000N of the 1D majority rule with radius r = 1000 as

a function of lattice size N .

where n is assumed to be positive odd integer. This is the form of the local function

used in the majority CA regardless of dimension. Of course, the inputs x1, x2, . . . , xn
are arranged linearly only in 1D, but in 2D they form a square array, etc. Details of

the arrangement of inputs are irrelevant for considerations in this section, thus we will

ignore them for now.

The mean-field polynomial associated with this function is defined as

fMF (x) =
∑

(a1,a2,...,an)∈{0,1}n
f(a1, a2, . . . , an)

n∏
i=1

xai(1− x)ai , (8)
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Figure 4. Plots of fMF (x) for n = 3, 5, . . . , 19.

where we take xai = 1 if ai = 0 and (1−x)ai = 1 if ai = 0. Here x represents the density

of ones. Several examples of fMF are shown below.

n = 1 : fMF (x) = x

n = 3 : fMF (x) = − 2x3 + 3x2

n = 5 : fMF (x) = 6x5 − 15x4 + 10x3

n = 7 : fMF (x) = − 20x7 + 70x6 − 84x5 + 35x4

n = 9 : fMF (x) = 70x9 − 315x8 + 540x7 − 420x6 + 126x5

n = 11 : fMF (x) = − 252x11 + 1386x10 − 3080x9 + 3465x8 − 1980x7 + 462x6

One can easily show that the following formula for fMF (x) holds for arbitrary odd n:

fMF (x) =

n−1
2∑

i=0

(
n

i

)
xn−i(1− x)i. (9)

Graphs of fMF for n = 3, 5, . . . , 19 are shown in Figure 4. One can see from that

figure that for all n, fMF (x) has stable fixed points at x = 0 and x = 1, and unstable

(repelling) fixed point at x = 1/2. The fixed point at x = 1/2 corresponds to the

inflection point of fMF (x), and as n increases, the slope at x = 1/2 increases too. In

fact, for n = 3, 5, . . . , 19, the values of f ′MF (1/2) form the sequence

3

2
,
15

8
,
35

16
,
315

128
,
693

256
,
3003

1024
,
6435

2048
,
109395

32768
,
230945

65536
, . . . (10)

or, in decimal form,

1.5, 1.875, 2.1875, 2.4609375, 2.70703125, 2.932617188, 3.142089844,

3.338470459, 3.523941040, . . .



Performance of the majority voting rule 8

This sequence is clearly increasing with n, which means that the unstable fixed point at

1/2 is becoming more and more strongly repelling. Using eq. (9), one can demonstrate

that

f ′MF (1/2) =

(
n+ 1
n+1
2

)
2−n−1(n+ 1), (11)

and therefore

lim
n→∞

f ′MF (1/2) =∞. (12)

This means that the mean-field approximation is becoming more and more like a step

function, and the slope at x = 1/2 tends to infinity.

We can also see from Figure 4 that both x = 0 and x = 1 are strongly attracting

fixed points, with basins of attractions, respectively, [0, 1/2) and (1/2, 1]. In fact,

both these points are superattracting, meaning that f ′MF (0) = f ′MF (1) = 0. For

superattracting fixed points one can measure the “strength of attraction” by defining

the degree of superattraction as the smallest order of a derivative which does not vanish

at the fixed point. Since for a given odd n the smallest power of x occurring in fMF (x)

is (n+1)/2, the first non-vanishing derivative at x = 0 will be of order (n+1)/2. Similar

reasoning holds for x = 1, so that both x = 0 and x = 1 are superattracting fixed points

of degree (n+ 1)/2. Again, this means that the strength of attraction increases with n,

just like the strength of repulsion for the fixed point at x = 1/2.

If we consider the majority CA rule with fixed radius, and increase the

dimensionality of space, the number of cells in the neighbourhood will increase with

dimension, and the strength of attraction/repulsion of fixed points of the mean-field

map will increase too. Since the accuracy of the mean field approximation improves

with increasing dimension, we can expect that the performance of the majority rule in

solving DCP will increase too. The above argument explains the fact that the increasing

number of cells in the neighbourhood is the main factor which could lead to increased

performance of the majority rule in solving DCP in higher dimension. But this is not

the only factor, as we will see in the next section.

6. Simulation results

The arguments presented in the previous two sections can be verified by direct

simulations, iterating the generalized majority voting rule with Moore neighbourhood

Mr,d of radius r and dimension d,

Ψ(x)n = majority(xn+Mr,d
), (13)

where n ∈ Zd
L and x ∈ AZd

L . In what follows, N will denote the total number of cells in

the lattice, N = Ld.

Performing such simulations in various dimensions, we found that for a given fixed

radius of the neighbourhood, DCP performance of the majority rule increases with

dimension. We performed simulations of DCP for N = 104 cells in dimensions 1 to 4,
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Figure 5. Evolution of the majority rule in 3D starting from the initial configuration

with density 0.43

varying r from 1 to a value for which the performance approaches 100%. Obviously,

the radius cannot be increased ad infinitum, because at some point the neighbourhood

becomes large enough to include the entire lattice, and then the performance reaches

100%.

We took the size N of the configuration space hypercube to be approximately 104

for all dimensions. Specifically, we used L = 10001, 100, 22 and 10 respectively for d = 1,

2, 3, and 4, yielding N = 10001, 1002, 223 and 104. Note that for d = 3 this resulted in

N = 223 = 10648, that is, slightly more than 10000, but it was the only choice as the

cubic root of 10000 is not an integer.

Also note that in the case of 1D majority rule, we used odd lattice size N = 10001,

to make sure that every configuration can be classified. In higher dimensions it was

not possible, and we had to use even lattice size. Once could ask at this point, what

happens when the majority rule is applied to a perfectly symmetric configuration, that

is, configuration with equal number of ones and zeros? It turns out that the orbit of

such configuration reaches either the homogeneous fixed point or otherwise another,

non-homogeneous fixed point. Probability of reaching the fixed point of all zeros is the

same as the probability of reaching the fixed point of all ones, so there is no breaking

of symmetry. Each such case would then be counted as incorrect classification.

In order to avoid the problem we slightly modified the Bernoulli distribution for

dimensions d > 1. Each time when a configuration was generated with exactly the same

number of zeros and ones, we replaced one bit of this configuration by its complement,

to break the symmetry. The effect of this change on the performance numbers is almost

negligible, slightly increasing these numbers, as configurations which would otherwise

be always counted as incorrectly classified now have a chance to be classified correctly.

This modification, however, has no effect on the overall conclusion of this paper.

We assumed Tmax = 200 and verified that further increase of Tmax had no

detectable influence on the performance numbers. This is because the convergence

to the homogeneous state is very fast. An example of a few iterations of the majority
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radius r
Performance (%)

d = 2 d = 3 d = 4

1 0 9.52 78.3

2 0 84.58 93.68

3 9.06 87.25 97.35

4 45.18 89.01 98.92

5 51.42 90.36

6 52.04 92.57

7 54.12 95.57

8 54.86 98.08

9 56.3

10 56.62

15 62.51

20 68.37

25 77.15

30 85.02

35 94.36

40 98.17

Table 1. Performance of the majority rule in dimensions 2 − 4 for different radii of

the neighbourhood. See Figure 2 for d = 1 case.

rule in 3D is shown in Figure 5.

Simulation results are presented in Table 1. This table shows performance of the

majority rule in dimensions 2, 3, and 4. Due to the large number of data points,

numbers for d = 1 are not shown in the table, they are instead presented in Figure 2.

The numbers shown in Table 1 reveal the same pattern as what has been observed

in one dimension, namely the performance increases with the increasing radius r. The

convergence toward the perfect performance is faster in higher dimension, and one could

think that this is simply because the number of cells in the neighbourhood grows faster

in higher dimension.

We claim, however, that even if we had two rules (in different dimensions) with

the same number of cells in their neighbourhoods, the rule with higher dimension

would perform better. Obviously, having exactly the same number of cells in the

neighbourhood is difficult to achieve, as we would need to find numbers r1, r2 and d1, d2
such that (2r+ 1)d1 = (2r+ 2)d2 . There are, of course, may such examples, for instance

d1 = 2, r1 = 4 with performance 45.15% and d2 = 4, r2 = 1 with performance 98.92%,

but it is difficult to see a general trend by considering only such selected cases.

In order to better illustrate the influence of dimension on performance let us define

the connectivity c of the neighbourhood to be the ratio of the number of cells in the
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Figure 6. Plot of performance p1000010000 of the majority rule as a function of connectivity

of the neighbourhood c = (2r − 1)d/N , for dimensions d = 1(+), d = 2(×), d = 3(?)

and d = 4(�).

neighbourhood to the number of cells in the lattice,

c =
(2r + 1)d

N
. (14)

We then plot the performance of the majority rule as a function of connectivity, as

shown in in Figure 6. For each dimension, the graph of the performance as a function of

c resembles S-shaped curve. This is especially visible in one dimension, while in higher

dimension the number of data points is getting smaller, thus the shape becomes less

pronounced. Nevertheless, we can observe that generally a curve corresponding to a

higher dimension lies above the curve corresponding to the lower dimension. We could

therefore say that if the connectivity (and thus the number of cells in the neighbourhood)

is fixed while the dimension increases, then the performance increases as well. Since

normally there are not too many data points which would have exactly the same c

yet belonged to different curves, we can make a stronger statement in a more formal

language, as follows.

Conjecture 1 Let Ψ1 : AZd1
L1 → AZd1

L1 and Ψ2 : AZd2
L2 → AZd2

L2 be two majority CA rules

with Moore neighbourhoods of radius r1 and r2, containing, respectively, n1 = (2r1 +1)d1

and n2 = (2r2+1)d2 cells, where Ld1
1 = Ld2

2 . If d1 > d2 and n1 ≥ n2, then the performance

of Ψ1 in DCP is strictly greater than the performance of Ψ2.
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7. Conclusion

Both the numerical results and theoretical considerations support the conjecture that

the simple majority rule improves its performance in DCP as the dimensionality of

space increases. We hope that this observation may stimulate further research on DCP

in higher dimensions, as well as investigations of high-dimensional versions of other

problems of this type, such as, for example, parity problem or non-symmetric density

classification problem.
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