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ABSTRACT
Systems with large number of interacting components are
often modelled by random graphs and networks. In mod-
els of this type, one frequently needs to characterize graph
clustering at both local and global level. We propose a
method of characterization of clustering in large graphs and
networks using the concept ofk-core decomposition. The
plot of clustering coefficient ofk-core versus size ofk-core
will be called the spectrum of clustering coefficients. We
show thatk-core spectrum may play an important role in
language graphs, such as graphs constructed from language
dictionaries, where it can be used to describe some dynam-
ical phenomena by purely static, topological quantities. In
the last part of the paper, we propose a random graph model
of a dictionary graph for which thek-core spectrum has
similar features as in real dictionary graphs. The model
is based on generalization of geometric random graphs in
which the range parameter varies from vertex to vertex.
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1 Introduction

In recent years, large graphs and networks with complex
topological structure became one of the leading paradigms
of mathematical modelling [5]. A large variety of natural
and technological phenomena can be described and mod-
elled using the frameworks of graph theory and network
theory [10].

In many cases, if we want to investigate a complex
system with large number of interacting components, we
need a good “null model”, that is, a model which is as sim-
ple as possible, yet it captures the desired features of the
real system as closely as possible. Obviously, the notion of
“as simple as possible” need to be defined first. In the case
of large graphs and networks, we often need to construct
a model which has somewhat similar topology as the sys-
tem under consideration. Various quantities characterizing
structure of large networks have been introduced, includ-
ing shortest path related functions, functions characterizing
graph components, centrality measures, spectral properties,
and many others. Among these quantities, one of the most

important and most frequently used is the clustering coef-
ficient or transitivity [5]. Clustering coefficient can be de-
fined either locally (for each vertex) or globally (as average
of local clustering coefficients). The local clustering is not
very convenient to use, as it is typically a very large vector.
Averaging it over the entire graph discards too much infor-
mation, and proposed different averaging schemes, such as
weighted averaging, are still not very satisfactory. In what
follows, we will introduce a measure of clustering which
lies somewhere between the local and the global level. We
will then show an application of this concept in a model of
language dictionary graph.

2 Core decomposition and clustering spectra

The clustering coefficient was originally introduced in [12].
It represents the average probability that two neighbours of
a given vertex are also a neighbour of one another. More
formally, given a vertexv of a graphG, the local clustering
coefficient is defined as

Cv(G) =
number of edges between neighbours of v

(

deg(v)
2

)
,

wheredeg(v) is the degree ofv, that is, the number of
edges connected to tov. Clustering coefficient can thus
be understood as the ratio of the number of edges that ex-
ist in the neighbourhood ofv to the maximum number of
edges that could potentially exist in that neighbourhood of
v, which happens to be

(

deg(v)
2

)

. The clustering coefficient
C(G) of the whole graphG is then defined as the average
of Cv(G) over all verticesv belonging toG.

Clustering coefficient of the graph is a measure of the
“cliquishness” of the graph. One can say thatCv(G) char-
acterizes local “cliquishness” at vertexv, whileC(G) char-
acterizes global “cliquishness”. In practice, however, the
local clustering is too detailed to be useful, simply because
we have as manyCv(G) numbers as vertices in the graph.
The global clustering, on the other hand, is too coarse, be-
ing just one scalar value for the entire graph. We will now
show how to construct an intermediate characterization of
clustering, which lies (in terms of usability) somewhere be-
tween “microscopic”Cc(G) and “macroscopic”C(G).

Before we do this, we will first introduce the notion
of k-core. For a non-negative integerk, k-core of a graph



Figure 1. Example ofk-core decomposition of a graph (af-
ter [3]).

is the maximal subgraph such that its vertices have degree
greater or equal tok. By the “degree” in this definition
we mean the degree of the vertex in the subgraph. IfG is
a given graph, we defineGk to be thek-core ofG. For
k = 0, 1, 2, . . ., subgraphsGk form a nested sequence of
graphs whereGk+1 ⊂ Gk. Construction of the sequence
of k-cores is known ask-core decomposition [4]. There
exists an algorithm fork-core decomposition [3, 4] with
time complexity ofO(n + e), wheren is the number of
vertices inG ande is the number of edges ofG. This means
that even for very large graphs,k-cores can be computed in
an efficient way. Figure 1 shows an example of a graph and
its k-core decomposition.

We are now ready to define the promissed alternative
tool for characterization of clustering, to be called “k-core
spectrum of clustering coefficients”. It will be defined as a
set of pairs(|Gk|, C(Gk)), where|G| denotes the number
of vertices ofG. We will visualize thek-core spectrum of
clustering coefficients by plotting points(|Gk|, C(Gk)) on
a plane. The value ofk will range from1 to kmax, where
kmax to the largestk for whichGk is non-empty.

For some graphs, the core spectrum is very narrow,
meaning thatkmax is rather small, and the number of points
in the k-core spectrum is small. This is the case, for ex-
ample, for classical Erdös-Rényi random graphs. In other
cases, the spectum may be quite wide, as we will see in
subsequent sections.

3 Clustering spectrum of a dictionary graph

In [8], the authors studied properties of a graph constructed
from a large dictionary of English language available from
Project Gutenberg web site, also known asThe Gutenberg
Webster’s Unabridged Dictionary[9]. The dictionary has
been converted into a large graphG with vertices represent-
ing individual words. If one word occurs in the definition
of another word, then these two words (vertices) are linked
with an edge. The resulting graph has about105 vertices
and106 edges, and rather complicated topology, which is
not fully understood yet. It has been observed that the de-
gree distribution of the dictionary graph, as shown in Fig-
ure 2, is well approximated by the curve

P (d) = d−αexp(A − B d−β) (1)

 1

 10

 100

 1000

 10000

 10  100  1000

nu
m

be
r 

of
 n

od
es

degree

Figure 2. Degree distribution of the dictionary graph.

whereP (d) is the number of vertices with degreed, α =
2.61075, A = 15.6987, B = 10.2904, andβ = 0.83179.
Note that this is just a convenient empirical curve, which
we will use to describe the degree distribution of the dic-
tionary graph, and that it has no other special meaning or
theoretical justification.

Using the dictionary graph, one can build a simplistic
model of second language acquisition, as proposed in [8].
The person learning English as a second language knows at
a given moment only a subset of all words represented by
vertices ofG. Let W denote the set of known words, and
letG/W be the subgraph ofG generated byW . Obviously,
asW grows,G/W grows as well. An important feature of
the learning process is that the words which are more fre-
quently encountered are learned first, while the more spe-
cialized and rare words are learned later. It is possible to
rank words of English (or other) language by frequency of
their occurrence in a large text corpus, and then assume that
the words are roughly speaking learned in order of their ap-
pearance on the list. This assumption, although very crude,
reflects the basic mechanism of second language learning.

The learning process, therefore, can be modelled by a
growing graphG/W , such that vertices are being added to
it in order given by the rank-frequency list. It has been dis-
covered that the clustering coefficient of graphG/W ini-
tially decreases as the graph grows, reaches a minimum
whenW consists of approximately 3000 words, and then
increases again. The location of this minimum appears to
be in roughly the same place as other special points in lan-
guage learning, as discussed in [8]. The exact reason for
this is not currently known.

The growing graph model of language acquisition is
dynamical in the sense that it involves time. The existence
of a minimum of the clustering coefficient has been origi-
nally formulated as a dynamical question too. We will now
show that one can use the notion ofk-core spectrum to re-
formulate the model in such a way that it won’t involve
time any more. The existence of the minimum of the clus-
tering coefficient will then become a topological property
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Figure 3.k-core spectrum of clustering coefficients for the
dictionary graph.

of the dictionary graph instead of a dynamical property.
We found that the position of the word in the rank-

frequency list is very highly correlated with its coreness.
By coreness we mean the number of the highestk-core to
which the word belongs. The most frequent words have
generally high coreness, and the rare words have low core-
ness. We can, therefore, approximately assume that the
learner first learns words belonging tokmax-core ofG, then
words of(kmax − 1)-core, and so on. Words central to the
language are learned first, and consecutive vocabulary lay-
ers are being added as the learning progresses.

Thek-core spectrum of clustering coefficients for the
dictionary graph is shown in Figure 3. We immediately no-
tice a rather remarkable feature, namely, it exhibits a very
well-defined minimum when the core size reaches approxi-
mately 3000, precisely in the same place as mentioned ear-
lier. However, now this minimum is just a property of the
dictionary graph, and we do need to refer to any dynamical
process to describe this phenomenon.

Eventhough the dictionary graph has somewhat “ran-
dom” appearance when one tries to visualize it, and its
degree distribution exhibits a power law characteristic to
some random graph models, itsk-core spectrum is unlike
the spectrum of any other random graph. We computed
spectra of classical random graphs, Barabasi-Albert ran-
dom graphs with variety of parameters, “power law clus-
ter graph”, GNP graph, and several others. None of them
exhibits a minimum in the spectrum, and most of the time
their spectra are monotonic functions of the core size.

4 Random graph models

Since standard models of random graphs do not have the
desired minimum in theirk-core spectrum, the next step
is to generate random graphs with exactly the same degree
distribution as the dictionary graphs. It is rather straight-
forward to produce a random graph with the degree distri-
bution given by eq. (1). One could reasonably suspect that
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Figure 4. k-core spectrum of clustering coefficients for
configuration model graph (+) and the graph obtained with
Havel-Hakimi algorithm (×).

such random graph could serve as “zero-th order” model of
the dictionary graph. The simplest method to create a ran-
dom graph with a given degree distribution is so-called con-
figuration model [10]. Using this method, one first creates
a degree sequence of lengthN drawn from the distribution
(1). ThenN vertices are created with stubs for attaching
edges, such that the number of stubs equals to the degree
of the vertex. We connect two randomly selected available
stubs with an edge, and repeat this procedure until all stubs
are exhausted.

Another method for constructing a random graph with
a given degree sequence is known as Havel-Hakimi algo-
rithm [6]. The algorithm creates the desired graph by suc-
cessively connecting the node of highest degree to other
nodes of highest degree, resorting remaining nodes by de-
gree, and repeating the process.

We used both methods to create random graphs of the
same size as the dictionary graph and having the degree
distribution given by eq. (1). This was done using Net-
workX package [1]. We then computedk-core spectrum of
clustering coefficients for the resulting graphs using igraph
library [7]. The results are shown in Figure 4. In spite of
the “right” degree distribution, core spectra of these graphs
do not resemble the dictionary graph spectrum at all. In
both cases, clustering coefficient decreases with the grow-
ing core size.

5 Generalized geometric random graphs

Failure to produce the desiredk-core spectrum using meth-
ods described in previous sections suggests that a different
approach is needed. We will now describe a new random
graph model, based on the idea of geometric graphs.

Geometric random graph [11] is a type of a random
graph which is constructed as follows. We first place ver-
tices at random uniformly and independently on the unit
square. Then we connect two vertices,u, v, if and only
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Figure 5.k-core spectrum of clustering coefficients for the
geometric graph withr = 0.00914.
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Figure 6. Degree distribution for the geometric graph with
r = 0.00914.

if the distance between them is less or equal than a given
thresholdr, that is, whend(u, v) ≤ r. The distanced(u, v)
is often computed assuming periodic boundary condition,
in which case the unit square effectively becomes a torus.
Figures 5 and 6 show respectivelyk-core spectrum and de-
gree distribution of a geometric graph with the same num-
ber of vertices and edges as the dictionary graph, corre-
sponding tor = 0.00914. As we can see, the degree distri-
bution is far from the power law, and the spectrum does not
exhibit any minimum. Clearly, the normal geometric ran-
dom graph cannot serve as a model of the dictionary graph.

We will now propose a natural generalization of the
geometric random graph, in which the parameterr is not
constant, but varies from vertex to vertex. To be precise,
we place vertices at random uniformly and independently
on the unit torus. Vertices are numbered by indexi ranging
from 1 to n. Each vertex has its own “range parameter”
r(i). Two vertices labelledi and j are connected if and
only if d(i, j) ≤ r(i) or d(i, j) ≤ r(j), that is, when one
of them is within the range of the other.
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Figure 7.k-core spectrum of clustering coefficients for the
generalized geometric graph withr(i) defined by eq. (2)
with γ = 1 (+), γ = 2 (×), andγ = 4 (�)
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Figure 8. Degree distribution for the generalized geometric
graph withr(i) defined by eq. (2) withγ = 4.

Suppose now thatr(i) is an increasing function ofi.
This would mean that vertices with largei have large range,
and are likely to be connected to a larger number of other
vertices than those with smalli. This is precisely what we
would want if vertices represented words of the language,
andi was the reversed order in which the words are learned.
The words one learns first are the high-frequency words,
and in the dictionary graph they should be linked to large
number of other words. One would therefore expect that a
generalized geometric random graph with increasingr(i)
might have properties similar to the dictionary graph.

To test this hypothesis, we considered a simple form
of r(i). Let n be the desired number of vertices in the
generalized geometric random graph, andm be the desired
number of edges. We take

r(i) = λ

(

i

n

)γ

, (2)

whereγ > 0. The constantλ is determined by the require-



ment that the total number of edges should be equal tom,
meaning that

1

2
nπ

n
∑

i=1

r(i)2 = m. (3)

The factor1/2 appears in front of the sum since all edges
are counted twice. This leads to

λ =

√

2m

nπn2γ

(

n
∑

i=1

i2γ

)

−1/2

. (4)

Approximating the sum by integral, after integration we ob-
tain

λ ≈

√

2m(1 − n−1−2γ)

(1 + 2γ)π
. (5)

Figure 7 showsk-core spectrum of clustering coeffi-
cients for the generalized geometric graph withr(i) defined
by eq. (2) for several values of the exponentγ. We can see
that even in the linear case, that is, forγ = 1, the spectrum
exhibits clear and well defined minimum. Whenγ = 4, the
minimum occurs roughly when the size ofk-core is approx-
imately equal to 20000. This is well beyond the minimum
in the dictionary graph, which occurs at 3000. Neverthe-
less, this appears to be the first random graph model known
to us which possesses a minimum in the spectrum. The de-
gree distribution of the generalized geometric graph with
γ = 4 is shown in Figure 8, and as one can see, it shows
features of a power law, similarly to the dictionary graph.

6 Why geometric?

Eventhough the spectrum of the generalized geometric
graph shown in Figure 7 is not identical with the spectrum
of the dictionary graph, we believe that is should be pos-
sible to find another functionr(i) which would produce a
graph with closely matching spectrum. In fact, when in (2)
we setγ = 20, k-core spectrum of the resulting general-
ized geometric graph has a local minimum located around
6000, as shown in Figure 9. Preliminary results indicate
that further one may need to increase the dimensionality of
space to further improve the match.

The intriguing question is this: why geometric graphs
seem to be the best models of dictionary graphs? Where
does the “geometric” part come from? A possible, although
quite speculative explanation can be formulated if one as-
sumes that words occupy regions of some abstract space,
to be tentatively called “semantic space”. Words which are
frequently used are likely to occupy large volume of this
space, as they have wide meaning and can be used in many
different contexts. Highly specialized words, on the other
hand, are less frequently used and more narrowly defined,
so one can assume that they occupy smaller volumes of the
semantic space. When the volume occupied by one word
overlaps with another word (such as when one of them is
needed to define the other), then we connect them with an
edge, obtaining a graph with a topology similar to the dic-
tionary graph.
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Figure 9. Part ofk-core spectrum of clustering coefficients
for r(i) defined by eq. (2) withγ = 20.

7 Conclusions and further work

The concept ofk-core spectrum of clustering coefficients is
a useful way of characterizing clustering of random graphs,
allowing to describe the the “middle ground” between the
local and the global clustering. We demonstrated that in
the case of the dictionary graph,k-core spectrum of clus-
tering coefficients has a natural interpretation as series of
clustering coefficients of a growing vocabulary graph. We
were also able to devise a model, based on generalized ge-
ometric random graph, for which the spectrum behaves in
a similar way as the spectrum of the dictionary graph.

We should point out that the shape of thek-core spec-
tum for dictionary graphs appears to be independent of the
dictionary itself. In fact, it appears to be independent of the
language as well. Figure 10 shows the spectrum for a of
French language dictionary graph, constructed fromDic-
tionnaire de l’Acad́emie Française, 6th Edition[2]. This
graph is smaller that the Webster graph, having28238 ver-
tices and790730 edges, but the shape of its spectrum still
closely resembles Figure 3.

More work needs to be done to improve the model.
We are currently performing a systematic search of func-
tions r(i), trying to find a function which would produce
k-core spectrum closer to the spectrum of the dictionary
graph. We are also attempting to calculate thek-core spec-
trum for various random graph models rigorously, without
resorting to numerical computations. Among other ques-
tions, a question of particular interest is what conditions
must r(i) satisfy for the generalized geometric random
graph to have a minimum in its spectrum. This issue is cur-
rently under investigation and will be reported elsewhere.

8 Acknowledgements

The first author (H.F.) acknowledges partial financial sup-
port in the form of Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada



 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 100  1000  10000

cl
us

te
rin

g 
co

ef
fic

ie
nt

core size

Figure 10. k-core spectrum of clustering coefficients for
the French dictionary graph.
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