TOWARD A MODEL OF LANGUAGE ACQUISITION THRESHOLD

ABSTRACT

We demonstrate how the paradigm of complex networks
can be used to model some aspects of the process of second
language acquisition. In learning a new language, knowl-
edge of 3000-4000 most frequent words appears to be a
significant threshold, necessary to transfer reading skills
from L1 to L2*. We show that this threshold corresponds to
the transition from the Zipf’s law to non-Zipfian regime in
the rank-frequency plot of words of the English language.
Using a large dictionary, we then construct a graph repre-
senting the dictionary, and study topological properties of
subgraphs generated by & most frequent words of the lan-
guage. Clustering coefficient of these subgraphs reaches a
minimum in the same place as the crossover point in the
rank-frequency plot. We conjecture that the coincidence of
all these threshold may indicate a change in the language
structure which occurs when the vocabulary size reaches
about 3000-4000 words.
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1 Introduction

In the past decade, complex networks composed of a large
number of interacting components became an important
paradigm in modelling of natural, social, and technological
phenomena. Many hundreds of publications appeared, re-
porting various properties of large-scale complex networks
and attempting to describe their topology and dynamics us-
ing a variety of tools drawn from diverse disciplines includ-
ing graph theory, probability and statistics, as well as sta-
tistical physics. Examples of successful applications of this
paradigm include models of collaboration networks, food
webs, traffic networks, complex networks in genomics and
proteomics, power grids, and many others.[2]

Given the complex nature of human languages, it is
not surprising that the network paradigm has been utilized
to study linguistic phenomena. For example, it has been
demonstrated that co-occurrence of words in sentences can
be described in terms of a scale-free graph exhibiting the
so-called small-world effect [8]. Similarly, terms of a the-
saurus can be viewed as nodes of a large graph, with graph
edges representing relationships between terms. It has been
found that the degree distribution of this graph also exhibits
many features typical to scale-free networks [5].

111 refers to the fi rst language, and L2 the second language. Those
are common abbreviations used in lingustic literature.

In this paper, we will investigate another linguistic
phenomenon, namely the process of second language ac-
quisition. We will show that the paradigm of complex net-
works can be applied to model some aspects of this highly
complicated process.

In the past, learning a foreign language was viewed
mainly as a matter of mastering the language’s grammar,
with a relatively minor importance attached to the vocabu-
lary development. Contemporary language acquisition spe-
cialists, however, recognize the central importance of the
vocabulary, and in the last two decades a lot of research ef-
fort went into the study of vocabulary learning strategies,
determining what it means to “know a word”, and methods
of testing vocabulary knowledge and use [12].

One of the first questions which one encounters while
learning a new language is “how much vocabulary do |
need to know?”. Of course, the most ambitious goal would
be to know all words of the language. Such goal, however,
is usually impossible to attain, as even native speakers do
not know all of the language. While comprehensive dictio-
naries of English can easily contain over 10° word families,
it has been demonstrated that educated native speakers of
English know only a fraction of this lexicon — about 20000
word families [6].

Many language scholars agree that the significant
threshold in the language learning occurs perhaps around
3000-4000 word families. It turns out that once this thresh-
old is reached, learners can understand over 90% of the
running words in a typical text [3]. Such high coverage of
the text, in turn, appears to be a necessary condition for
transferring reading skills from the first to the second lan-
guage [9]. In what follows, we will call this threshold a
linguistic threshold, to be referred to as 7.

The goal of this work is to shed some light on the
aforementioned threshold. We will show that some aspects
of the language structure also exhibit thresholds located
very close to T;.

2 Zipf’s law

In 1932, George Zipf [15] found that in a large text corpus
there exists a striking approximate relation between the fre-
quency of the occurrence of the word and its rank in the list
of all words. By rank r we mean the position of the word
in the list of all words arranged by decreasing frequency. If
f(r) is the frequency of occurrence of the word with rank
r, then the Zipf’s law states that
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where A is the normalization constant and z is the ex-
ponent which usually takes a value slightly larger than 1.
While the Zipf’s law is only approximately true, and bet-
ter phenomenological models for rank-frequency statistics
of words have been proposed, we will use Zipf’s law as a
starting point for subsequent considerations. For simplic-
ity, let as assume that the value of the exponent z is exactly
1, and let the total number of words in the language be V.
The normalization constant A will then be given by
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where ¥ is the digamma function, defined as the logarith-
mic derivative of the gamma function ¥(z) = - InT'(x),
and v = 0.57721566 . . . is the Euler-Mascheroni constant.

Let us first assume that the learner of a foreign lan-
guage learns new words following the frequency list, start-
ing from the most frequent words and moving down the
list. If the learner knows & top-ranking words, then the text
coverage, or the fraction of known words is

k

C(k) =" f(r) = A(W(k+1)+7). (3)
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The asymptotic expansion of the digamma function is given
by
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where B,,, are Bernoulli numbers. One expects, therefore,
that for large k the leading term of C'(k) should be

C(k) ~ Alnk, ()

meaning that the text coverage should roughly be a linear
function of the logarithm of the vocabulary size. This al-
ready is a bad news, as it requires exponentially growing
effort to keep the coverage increasing at a constant rate.
Yet in reality the situation is even worse. Figure 1 show the
percentage text coverage as a function of vocabulary size
(based on data from [3]), plotted in semi-logarithmic coor-
dinates. Up to about 4000 words, the plot follows eq. (5)
rather well, but for larger vocabulary sizes, the actual cov-
erage is smaller than what Zipf’s law (eq. 1) with z = 1
would predict. The reason for this behavior of C(k) is the
deviation from Zipf’s law which can be observed for low-
frequency words. In [11], M. Montemurro studied word-
frequency distribution of English words using a large cor-
pus consisting of 2606 books in English. He found that
words for which the rank is below 3000-4000 obey Zipf’s
law regardless of the text length. Above this limit, there
seems to be another power law analogous to eq. (1), al-
though with a much larger exponent z, close to z = 2.3
and possibly even larger. This is illustrated in Figure 2.
The point above which the Zipf’s law is no longer valid
will be called Zipfian threshold, to be referred to as 7-,.
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Figure 1. The percentage text coverage as a function of
vocabulary size (based on data from [3]). Straight line rep-
resents the least square fit to the first seven data points.

The origin of the crossover from Zipf’s law to non
Zipfian behavior remains unknown. It is worth mention-
ing, however, that it is possible to encompass both these
regimes within a single a framework of a semi-empirical
model based on a single differential equation, originally
used to describe re-association in folded proteins [13]. The
starting point is the observation that that the Zipf’s distri-
bution (1) satisfies

daf
= e 6
= AL (6)
where A = zA~Y/# and ¢ = 1+ 1/2. M. Montemurro
[11] suggested the following generalization of the above
equation

df
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with p, ¢,  and X being positive real parameters. By fitting
solution curves to the data, one can find values of these pa-
rameters, and the resulting f(s) line exhibits behavior sim-
ilar to the rank-frequency distribution shown in Figure 2.
This suggest a possible connection between the equation
(7) and the mechanism leading to the formation of the lan-
guage, although details of such a connection remain un-
known.

3 Self-hosting

The evidence provided so far seems to support the idea that
some sort of structural change takes place when the vocabu-
lary size reaches 3000-5000. But why would this threshold
be significant in the process of language learning?

A possible explanation may be related to the con-
cept of “self-hosting” known in the theory of computer lan-
guages. A computer language compiler is self-hosting if it
is natively implemented in its own language. This is also
known as bootstrapping [10]. It has been demonstrated that
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Figure 2. Frequency-rank plot for a large corpus com-
prising 2606 books in English [11]. Figure adopted from
http://arxiv.org/abs/cond-mat/0104066.

the size of the source code for a self-hosting compiler can
be surprisingly small. For example, the “Obfuscated Tiny
C Compiler (OTCC)” is only 446 lines of code with one
statement per line, yet it is able to compile itself [1].

Everyone who learns a new language knows that
single-language dictionaries such as, for example, “Oxford
English Dictionary”, are not useful at the beginning, since
one does not know enough vocabulary to understand word
definitions. A bilingual dictionary must be used instead.
At some point however, the single-language dictionary be-
comes more useful than the bilingual one - a clear sign
that the knowledge of the language reached a level capa-
ble of “bootstrapping” or “self-hosting”, that is, defining
unknown words in terms of already known words of the
new language.

In order to model this phenomenon we decided to
use a large dictionary of English language available from
Project Gutenberg web site, also known as The Gutenberg
Webster’s Unabridged Dictionary [7]. The dictionary has
then been converted into a large graph with vertices repre-
senting individual words. If one word occurs in the defi-
nition of another word, then these two words (vertices) are
linked with an edge.

For the purpose of this project, the dictionary has been
altered in the following ways:

e Entries consisting of more than one word were omit-
ted.

e All senses of a word were considered to be a single
vertex in the resulting graph.

o All definitions for abbreviations, prefixes and suffixes
were omitted. Abbreviations within definitions were
deleted.

10000

t‘&
1000 £ Y
Y
2 5
8 %
h=4 *
: %
5 100 | %
5 %
=] R
= +
10 A
%z
o
T
T m————
. ‘ ‘ .
1 10 100 1000 10000 100000

degree

Figure 3. Degree distribution of G.

e Entries that were simply alternate spellings of another
entry or pointers to other entries were deleted.

e All pronunciations, references to illustrations, and
other miscellaneous items were deleted.

The resulting graph, to be referred to as G, has about
10° vertices and 10° edges (exactly 93062 vertices and
1124654 edges). Its degree distribution, illustrated in Fig-
ure 3, appears to obey a power law for all except very
small and very large degree values. It is interesting to note
that similar distribution have been observed in a number of
recently investigate complex networks, including, among
others, collaboration graphs, such as collaboration of sci-
entists or film actors [2]. Even more importantly, a very
similar distribution has been reported in the graph repre-
senting English thesaurus [5].

4 The model

The person learning English knows at a given moment only
a subset of all words represented by vertices of G. Let W
denote the set of known words, and let Gy be the subgraph
of G generated by W. We will assume that the learner
learns new words in the order dictated by the frequency list,
starting with most frequent words and progressing toward
less frequent words. The set of & top-ranking words will be
denoted as T (k). We can now consider a family of graphs
gW(k) with k € {1,2, .. .,N}.

In order to study properties of Gy (), one clearly
needs a frequency list for words of the English language.
We used the frequency list obtained from the American
National Corpus, a large electronic collection of American
English texts consisting of 22 million words [4]. We gen-
erated graphs Gyy () using that list and investigated how
the topological structure of these graphs changes with the
number of vertices k.

While thinking of subgraphs Gyy (i) in the context of
the aforementioned self-hosting or bootsraping, one would
expect that small subgraphs should be disconnected, and at
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Figure 4. Diameter of Gyy (1) as a function of .

some point, when the vocabulary is large enough for boot-
strapping, they should become connected. Yet this simple
expectation turned out to be completely wrong, as the first
feature that became immediately apparent was that Gy (x
is connected even for very small values of k. This is a con-
sequence of the fact that functional words such as in, for,
the, of, etc. occupy the top of the frequency list, and they
appear in essentially all definitions. So one has to turn to
other characterizations of the graph topology.

Since Gy (1) is connected, its diameter is finite, and
we can investigate how it varies as a function of k. Re-
call that the diameter of a connected graph G is the maxi-
mum distance between two vertices, where by the distance
d(u,v) between two vertices v and v we mean the number
of edges in the shortest path linking « and v. The diameter
is thus defined as

diam(G) = u,grel{a/}((G) d(u,v), (8)
where V(G) is the set of vertices of G. As shown in Fig-
ure 4, the diameter grows approximately linearly with the
logarithm of the number of vertices — strikingly similar to
what one observes in classical random graphs [2]. The di-
ameter, therefore, does not reveal any structural change in
the topology of Gyy (1) as k increases. We will have to turn
to yet another quantity characterizing complex networks,
namely the clustering coefficient.

5 Clustering coefficient

Originally introduced in [14], the clustering coefficient rep-
resents the average probability that two neighbours of a
given vertex are also a neighbour of one another. More
formally, given a vertex v of a graph G, the local clustering
coefficient is defined as

number of edges between neighbours of v

@)= () ’

where deg(v) is the degree of v, that is, the number of
edges connected to to v. Clustering coefficient can thus be
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Figure 5. Clustering coefficient of Gy () as a function of
k.

understood as the ratio of the number of edges that exist in
the neighbourhood of v to the maximum number of edges
that could exist in that neighbourhood of v, which happen
to be (“°&(*)). The clustering coefficient ¢(G) of the whole
graph G is then defined as the average of ¢, (G) over all
vertices v belonging to G.

We computed the clustering coefficient for Gy ;) and
plotted the result as a function of &, as shown in Fig-
ure 5. The interesting feature of this graph is the fact that
the clustering coefficient initially decreases with the grow-
ing vocabulary. When the vocabulary reaches about 4000
words, the trend reverses, and the coefficient starts increas-
ing again. The point at which the clustering coefficient
reaches its minimum will be called a clustering threshold,
defined as 7. ~ 4000.

This behavior of ¢(Gyw (x)) can be explained as fol-
lows. Initially, new words which are being added to the
vocabulary “probe” new (i.e., previously not covered) re-
gions of G, and they remain relatively far from each other,
since the graph G is rather large. Since each consecutive
word has a smaller frequency than the previous one, it con-
tributes smaller number of links to the clustering coefficient
than the previous word. Therefore, c(Gyy (x)) initially de-
creases. When T is reached, the number of words is large
enough that all vertices of G are in a close proximity of a
known word. New words no longer “discover” new areas of
G, but rather end up in the proximity of previously known
words, thus increasing the clustering coefficient. Reaching
T., therefore, is equivalent to covering all important areas
of the “semantic space”, and further increase of T, core-
sponds to obtaining finer and finer coverage of that space.

Of course, it is quite remarkable that 7. coincides
with the linguistic threshold 7; and the Zipfian threshold
T, - all of them appear to be around 4000 words.

6 Conclusions and future directions

We presented a compelling evidence that the process of lan-
guage acquisition is strongly nonlinear, exhibiting a thresh-



old which can be observed in several aspects of the process,
including text coverage, rank-frequency distribution of the
vocabulary, as well as the topological structure of the dic-
tionary. Clearly, the presented evidence is not conclusive,
but the authors hope that it may stimulate further research
in this field. One possible approach, which is currently
under investigation, is to use some other types of graphs
representing vocabulary, especially graphs where seman-
tic relationship between words are more precisely defined
than those in the dictionary-based graph G. Such seman-
tic networks have been constructed for several languages,
and they could easily be used to generate graphs in which
edges representing relationships such as synonyms, hyper-
nyms, hyponyms, etc.

We should also point out that although the change in
the topology of subgraphs of G has been observed at T,
representing minimum of the clustering coefficient, it is
not entirely clear how it is related to the concept of “self-
hosting” or bootstrapping. We plan, therefore, to construct
a different graph, with directed edges from the word being
defined to the word occurring in the definition. If one starts
removing bottom-ranking words from the graph, not much
should change at first - most entries will be defined in terms
of entries still remaining. But at some point, one expects
that too many entries will contain unknown words - corre-
sponding to the loss of “bootstrapping” ability. This work
is currently in progress and will be reported elsewhere.
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